Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684191

RESUMO

Agricultural soil contamination by waste motor oil (WMO) is a worldwide environmental problem. The phytotoxicity of WMO hydrocarbons limits agricultural production; therefore, Mexican standard NOM-138-SEMARNAT/SSA1-2012 (NOM-138) establishes a maximum permissible limit of 4400 ppm for hydrocarbons in soil. The objectives of this study are to (a) biostimulate, (b) bioaugment, and (c) phytoremediate soil impacted by 60,000 ppm of WMO, to decrease it to a concentration lower than the maximum allowed by NOM-138. Soil contaminated with WMO was biostimulated, bioaugmented, and phytoremediated, and the response variables were WMO concentration, germination, phenology, and biomass of Phaseolus vulgaris. The experimental data were validated by Tukey HSD ANOVA. The maximum decrease in WMO was recorded in the soil biostimulated, bioaugmented, and phytoremediated by P. vulgaris from 60,000 ppm to 190 ppm, which was considerably lower than the maximum allowable limit of 4400 ppm of NOM-138 after five months. Biostimulation of WMO-impacted soil by detergent, mineral solution and bioaugmentation with Xanthobacter autotrophicus accelerated the reduction in WMO concentration, which allowed phytoremediation with P. vulgaris to oxidize aromatic hydrocarbons and recover WMO-impacted agricultural soil faster than other bioremediation strategies.

2.
Asian-Australas J Anim Sci ; 29(1): 73-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26732330

RESUMO

The objective was to evaluate the effect of fodder tree species (FTS) with condensed tannin contents: Cordia elaeagnoides, Platymiscium lasiocarpum, Vitex mollis, and Haematoxylon brasiletto, on in vitro methane (CH4) production at 24 h post incubation. The analysis was performed using the in vitro gas production technique, with three levels of inclusion/species: 600, 800, and 1,000 mg and with 4 replicates/species/level of inclusion. The substrate was incubated at 39°C, and the gas and CH4 production were recorded at 4, 8, 12, and 24 h post incubation. The data collected was analyzed through Pearson correlation, polinomial regression and fixed effects models. There were negative correlations between FTS-total gas volume (r = -0.40; p<0.001); FTS-volume of CH4 produced (r = -0.40; p<0.001) and between the inclusion level-volume of CH4 produced (r = -0.20; p<0.001). As well as a positive correlation between hours post incubation-total gas volume (r = 0.42; p<0.001) and between hours post incubation-volume of CH4 produced (r = 0.48; p<0.001). The FTS: C. elaeagnoides, V. mollis, and H. brasiletto have potential, in the three inclusion levels analyzed, to reduce CH4 emission on in vitro trials (>32.7%), taking into account the total CH4 production at 24 h of the forage used as reference (Avena sativa). It's suggested that C. elaeagnoides-according to its crude protein, neutral detergent fiber, and condensed tannins content- is the best alternative within the FTS analyzed, for feeding ruminants and for the control of CH4 emissions during the dry season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...