Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 22(5): 1521-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18073330

RESUMO

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in the cysteine protease calpain 3 (CAPN3) that leads to selective muscle wasting. We previously showed that CAPN3 deficiency is associated with a profound perturbation of the NF-kappaB/IkappaB alpha survival pathway. In this study, the consequences of altered NF-kappaB/IkappaB alpha pathway were investigated using biological materials from LGMD2A patients. We first show that the antiapoptotic factor cellular-FLICE inhibitory protein (c-FLIP), which is dependent on the NF-kappaB pathway in normal muscle cells, is down-regulated in LGMD2A biopsies. In muscle cells isolated from LGMD2A patients, NF-kappaB is readily activated on cytokine induction as shown by an increase in its DNA binding activity. However, we observed discrepant transcriptional responses depending on the NF-kappaB target genes. IkappaB alpha is expressed following NF-kappaB activation independent of the CAPN3 status, whereas expression of c-FLIP is obtained only when CAPN3 is present. These data lead us to postulate that CAPN3 intervenes in the regulation of the expression of NF-kappaB-dependent survival genes to prevent apoptosis in skeletal muscle. Deregulations in the NF-kappaB pathway could be part of the mechanism responsible for the muscle wasting resulting from CAPN3 deficiency.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Calpaína/fisiologia , Proteínas Musculares/fisiologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , NF-kappa B/fisiologia , Apoptose/fisiologia , Calpaína/deficiência , Células Cultivadas , Regulação para Baixo , Humanos , Proteínas I-kappa B/biossíntese , Interleucina-1beta/fisiologia , Modelos Biológicos , Proteínas Musculares/deficiência , Músculo Esquelético/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Proteína X Associada a bcl-2/biossíntese , Proteína bcl-X/biossíntese
2.
Cell Tissue Res ; 323(1): 91-103, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16160860

RESUMO

Rat quiescin/sulphydryl oxidase (rQSOX) introduces disulphide bridges into peptides and proteins with the reduction of molecular oxygen to hydrogen peroxide. Its occurrence has been previously highlighted in a wide range of organs by reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analyses, methods that have provided information concerning its expression in whole organs but that do not reveal the cell types expressing this enzyme. In this report, in addition to RT-PCR and Western blot experiments, the cell-specific localization of rQSOX has been investigated in a wide range of male and female adult rat tissues by using in situ hybridization and immunohistochemistry. Labelling was detected in most organs and systems including the immune, endocrine and reproductive systems, the respiratory, digestive and urinary tracts and the skin. No labelling was observed in the heart, blood vessel endothelium, liver or smooth and skeletal muscles. rQSOX expression was mainly localized in epithelial cells specialized in secretion, strengthening the hypothesis that QSOX enzymes play an important role in the mechanism of secretion, notably in the folding of secreted proteins. The intracellular patterns of immunolabelling indicate that the protein usually follows the secretory pathway, which is in accordance with its secreted nature and its presumed involvement in the elaboration of the extracellular matrix. In seminiferous tubules, where a high level of expression was noticed, QSOX might play an important physiological role in sperm function and serve as a marker for the diagnosis of male infertility.


Assuntos
Regulação da Expressão Gênica , Oxirredutases/metabolismo , Túbulos Seminíferos/metabolismo , Animais , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA