Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001787

RESUMO

This work deals with the study of the release and antioxidant activity kinetics of three natural antioxidants associated as binary mixture (coumarin, and/or gallic acid and rutin) from chitosan films. Antioxidants were incorporated into film alone or in binary mixture. The aim was to determine the influence of rutin on the phenolic acid and benzopyrone. The UV-visible light transmission spectra of the films were also investigated. Neat chitosan films and chitosan incorporated coumarin exhibited high transmittance in the UV-visible light range, while GA-added chitosan films showed excellent UV light barrier properties. The molecular interactions between chitosan network and antioxidants were confirmed by FTIR where spectra displayed a shift of the amide-III peak. Rutin has a complex structure that can undergo ionization. The chitosan network structure induced change was found to influence the release behavior. The film containing rutin showed the highest antioxidant activity (65.58 ± 0.26%), followed by gallic acid (44.82 ± 3.73%), while coumarin displayed the lowest activity (27.27 ± 4.04%). The kinetic rate against DPPH-free radical of rutin is three times higher than coumarin. The kinetic rates were influenced by the structure and interactions of the antioxidants with chitosan. Rutin exhibited a slow release due to its molecular interactions with chitosan, while coumarin and gallic acid showed faster release. The diffusion coefficient of coumarin is 900 times higher than that of rutin. The rutin presence significantly delayed the release of the gallic acid and coumarin, suggesting an antagonistic effect. However, their presence weakly affects the release behavior of rutin.

2.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107233

RESUMO

PLA (polylactic acid) is one of the three major biopolymers available on the market for food packaging, which is both bio-based and biodegradable. However, its performance as a barrier to gases remains too weak to be used for most types of food, particularly oxygen-sensitive foods. A surface treatment, such as coating, is a potential route for improving the barrier properties and/or providing bioactive properties such as antioxidants. Gelatin-based coating is a biodegradable and food-contact-friendly solution for improving PLA properties. The initial adhesion of gelatin to the film is successful, both over time and during production, however, the coating often delaminates. Corona processing (cold air plasma) is a new tool that requires low energy and no solvents or chemicals. It has been recently applied to the food industry to modify surface properties and has the potential to significantly improve gelatin crosslinking. The effect of this process on the functional properties of the coating, and the integrity of the incorporated active compounds were investigated. Two coatings have been studied, a control fish gelatin-glycerol, and an active one containing gallic acid (GA) as a natural antioxidant. Three powers of the corona process were applied on wet coatings. In the test conditions, there were no improvements in the gelatin crosslinking, but the corona did not cause any structural changes. However, when the corona and gallic acid were combined, the oxygen permeability was significantly reduced, while free radical scavenging, reduction, and chelating properties remained unaffected or slightly improved.

3.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049807

RESUMO

ß-cyclodextrin and allyl isothiocyanate inclusion complexes (ß-CD:AITC) have been proposed for developing fresh fruit and vegetable packaging materials. Therefore, the aim of this research was to develop active materials based on poly(lactic acid) (PLA) loaded with ß-CD:AITC and to assess changes in the material properties during the release of AITC to food simulants. PLA films with 0, 5 and 10 wt.% ß-CD:AITC were developed by extrusion. Surface properties were determined from contact angle measurements. Films were immersed in water, aqueous and fatty simulants to assess the absorption capacity and the change in the thermal properties. Moreover, the release of AITC in both simulants was evaluated by UV-spectroscopy and kinetic parameters were determined by data modeling. Results showed that a higher concentration of ß-CD:AITC increased the absorption of aqueous simulant of films, favoring the plasticization of PLA. However, the incorporation of ß-CD:AITC also avoided the swelling of PLA in fatty simulant. These effects and complex relationships between the polymer, inclusion complexes and food simulant explained the non-systematic behavior in the diffusion coefficient. However, the lower partition coefficient and higher percentage of released AITC to the fatty simulant suggested the potential of these materials for high-fat fruit and vegetable active packaging applications.


Assuntos
Frutas , Verduras , Poliésteres , Embalagem de Produtos , Embalagem de Alimentos/métodos
4.
J Sci Food Agric ; 103(3): 1115-1126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35781812

RESUMO

BACKGROUND: Poly(lactic acid) (PLA) has limited uses for moist and acidic foods due to its barrier properties, which are fairly poor, and its sensitivity to moisture. RESULTS: Deposition of thin coatings based on natural biopolymers (gelatin) incorporating bioactive agents has allowed the development of active packaging materials while maintaining their biodegradability and their food contact material ability. Gelatin coatings containing two phenolic acids (tannic and gallic) have been tested. These coated PLA films displayed a reduction of the moisture permeability and a slight modification of the thermal properties of PLA. The antioxidant properties of the films and their release kinetics in a simulant medium have been studied and modelled. CONCLUSIONS: Incorporation of phenolic acids induced interactions with the gelatin that modified the structure of the network and positively affected the retention, diffusivity, and transfer rate of the bioactive compounds when coated PLA films were in contact with the liquid simulant. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Polifenóis , Antioxidantes/química , Gelatina/química , Embalagem de Alimentos , Poliésteres/química
5.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432190

RESUMO

Linseed oil-based composite films were prepared with cinnamaldehyde (Cin) using a modified clay (organoclay) through in situ polymerization, which is the result of the interaction between Cin and organoclay. The incorporation of organoclay reduces the polymer chain's mobility and, therefore, increases the thermal stability of the composite films. In some experimental conditions, the clay is located both inside and on the surface of the film, thus, affecting the mechanical and thermal properties as well as the surface properties of the composite films. The incorporation of organoclay decreases the water contact angle of the composite film by more than 15%, whatever the amount of cinnamaldehyde. However, the incorporation of cinnamaldehyde has the opposite effect on film surface properties. Indeed, for the water vapor permeability (WVP), the effect of cinnamaldehyde on the film barrier properties is much higher in the presence of organoclay. The incorporation of hydrophobic compounds into the polymer films reduces the water content, which acts as a plasticizer and, therefore, decreases the WVP by more than 17%. Linseed oil has a natural antioxidant activity (~97%) due to the higher content of unsaturated fatty acids, and this activity increased with the amount of organoclay and cinnamaldehyde.


Assuntos
Óleo de Semente do Linho , Polímeros , Polimerização , Argila , Polímeros/química , Vapor
6.
Molecules ; 26(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924920

RESUMO

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young's modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Assuntos
Antioxidantes/química , Materiais Biocompatíveis/química , Embalagem de Alimentos , Membranas Artificiais , Materiais Inteligentes/química , Resíduos , Fenômenos Químicos , Quitosana/química , Frutas/química , Fenômenos Mecânicos , Análise Espectral
7.
Int J Biol Macromol ; 160: 780-794, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470584

RESUMO

Hydrocolloid-based films containing natural phenolic antioxidants (gallic and trans-cinnamic acids at 5% w/wt of polymers) embedded in a gelatin/chitosan matrix were designed as sustainable active packaging. This work deals with characterizing the release mechanisms of the phenolic acids from the films immersed into food simulants (sugar or polyol solutions) having different water activities and viscosities. The films containing gallic acid exhibited higher antioxidant activities than the trans-cinnamic acid films. The use of sucrose or glycerol to reduce the water activity (aw) both decreases the iron chelating power (antioxidant) and the E Coli growth (antimicrobial). Interactions involved between macromolecules (chitosan and gelatin) and phenolic compounds influence the release kinetic parameters (diffusivity, convection and partition coefficients) that were studied according to the nature of solute, the water activity and the viscosity of the release media. Thermal analysis (TGA and DSC) revealed a plasticization by both sucrose and glycerol, which entered the film.


Assuntos
Antioxidantes/química , Quitosana/química , Gelatina/química , Hidroxibenzoatos/química , Água/química , Anti-Infecciosos/química , Cinética , Viscosidade
8.
Food Chem ; 298: 125064, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260954

RESUMO

Edible films based on gelatin and chitosan have high gas and aroma barrier properties. This study focused on their capability to sorbed/retain aroma compounds (1-hexanal, 2-hexen-1-ol, 1-hexanol, 3-hexanone and phenol) at three relative humidity level (≤2%, 53% or 84% RH). Whatever the relative humidity condition, the order of sorption is keton (3-hexanone) < aldehyde (1-hexanal) < aliphatic alcohols (2-hexen-1-ol and 1-hexanol) < phenol. This order could be related to the intrinsic chemical properties of aroma compounds. The increase in moisture enhanced the sorption at the highest RH for all the aroma compounds. However, a competition between water and aliphatic alcohols is observed at 53%RH. All compounds have an ideal sorption behaviour (logarithmic increase) except 1-hexanal. The sorption of 1-hexanal, 1-hexanol, 2-hexen-1-ol and 3-hexanone induced an antiplasticization of the network by increasing the film Tg by more than 5 °C. On the contrary, phenol was an efficient plasticizer at least as high as moisture.


Assuntos
Quitosana/química , Gelatina/química , Compostos Orgânicos Voláteis/química , Adsorção , Álcoois/química , Varredura Diferencial de Calorimetria , Cromatografia Gasosa , Umidade , Cetonas/química , Cinética , Fenol/química , Temperatura
9.
Crit Rev Food Sci Nutr ; 59(7): 1137-1153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29040011

RESUMO

Nowadays, a new generation of edible films is being especially designed for incorporating antimicrobials, antioxidants, enzymes or functional ingredients. Edible films made from natural biopolymers become the focus of many research works as an alternative to synthetic food packaging due to their edibility, biodegradability and compostability as well as to their use as active packaging. Active compounds incorporated in edible films could protect foods against deterioration during storage and therefore extend their shelf life. These active films were mainly studied for the bioactivity, as antimicrobial or antioxidant. However, they could also improve the structure and the physicochemical properties of films through chemical linkage with reactive groups of the polymer chains for instance. Moreover, changing the film structure under cross-linking reaction may increase the cohesion between polymer chains and active compounds, and therefore their retention in the polymer network to better control their release. This manuscript provides an overview on the effect of bio-active compounds incorporation on the film structure and functional properties. Depending on their structure, concentration, reactive groups,.., active compounds can act as plasticizer, but also as anti-plasticizer or cross-linking agents in the biopolymer matrix, and can thus ameliorate the water vapour and gas permeability. Therefore, the retention of bioactive compounds in the polymer network and their release can be better controlled. They can also provide a negative plasticizing effect on the film structure. Hence, the improvement of edible active film functionalities has been investigated to achieve suitable applications on foods.


Assuntos
Compostos Fitoquímicos/química , Extratos Vegetais/química , Anti-Infecciosos , Antioxidantes , Bacteriocinas , Biopolímeros , Enzimas , Alimentos , Embalagem de Alimentos , Hidroxibenzoatos , Permeabilidade , Polímeros , Vapor , Compostos Orgânicos Voláteis
10.
Crit Rev Food Sci Nutr ; 59(21): 3431-3455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29999405

RESUMO

In order to improve the quality of food and to extend their shelf life, a new generation of active edible films is being especially intended after the incorporation of organic acids, enzymes, antimicrobial proteins, phenolic compounds, or other functional ingredients such as probiotics, flavors, vitamins and nutraceuticals. These active compounds have different mechanisms of action related to their structure, their concentration, the nature of micro-organism targeted, the process of encapsulation or incorporation in the biopolymer film-networks. The application of the active films by direct contact or indirect contact via the head space also affects the bioactivity of these compounds. This article critically reviews the published work on active edible-films and their applications for food preservation. The classes of active compounds and their action mechanisms are firstly discussed. Then, an extended overview on their effect on model food (simulants) or on real food during storage was also addressed. Edible films offer two main advantages over the direct incorporation of the antimicrobial or antioxidant agents into the bulk food: 1) to control the diffusion of active compounds at the surface of the food and 2) to reduce the amount of preservatives added in the food.


Assuntos
Anti-Infecciosos , Antioxidantes , Filmes Comestíveis , Embalagem de Alimentos , Conservação de Alimentos
11.
J Agric Food Chem ; 66(26): 6906-6916, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29852064

RESUMO

Sustainable hydrocolloid-based films containing natural antioxidants, caffeic and p-coumaric acids at different concentrations of 0.5%, 1%, 5%, and 10% w/w of polymers, were designed for packing fatty foods. Antioxidant activities and kinetics for all film formulations were assessed using radical scavenging activity (DPPH), reducing power, and iron chelating ability. Release kinetics of the antioxidants from the films into a food simulant (96% ethanol) were analyzed. The intermolecular interactions between antioxidants and polymers chains were assessed by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and related to the film properties. Antioxidant activity of pure compounds (powder), showed that caffeic acid (IC50 = 4 µg/mL) had higher activity than p-coumaric acid (IC50 = 33 µg/mL). Films containing caffeic acid exhibited higher antioxidant activity, reducing power, and iron chelating ability than p-coumaric acid films. The antioxidant activity is concentration dependent. However, the percentage of release (PR) in ethanol (96%) is not influenced by the initial concentration. PR is 88% ± 9% and 82% ± 5%, respectively, for caffeic and p-coumaric acids. Determination of the partition ( Kp) and the apparent diffusion ( D) coefficients allowed better characterization of the release kinetic mechanisms. The partition coefficients of caffeic acid ( Kp = 454) and p-coumaric acid ( Kp = 480) are not influenced by the initial concentration. The diffusion coefficients ( D) of caffeic and p-coumaric acids were of same order, but they slightly increased with the antioxidant concentration and probably related to antioxidant activity. FTIR displayed that amide B and amide-III are involved in the interactions occurring between polymer chains and antioxidants. However, interactions are of only low energy and unable to significantly affect the structure of films and consequently the release kinetics.


Assuntos
Antioxidantes/química , Ácidos Cafeicos/química , Ácidos Cumáricos/química , Embalagem de Alimentos/instrumentação , Coloides/química , Cinética
13.
Food Chem ; 242: 369-377, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037702

RESUMO

This work deals with the study of the release kinetics of some natural antioxidants (ferulic acid, caffeic acid and tyrosol) from chitosan-fish gelatin edible films immersed ethanol at 96%, as well as the kinetics of their antioxidant activity using the DPPH assay. The aim was to determine how film functional properties influence the release kinetic and antioxidant activity. The addition of antioxidants to chitosan-fish gelatin matrix decreased the water vapour permeability by more than 30%. The tensile strength (TS) increased up to 50% after the incorporation of antioxidants. Some molecular interactions between polymer chains and antioxidants were confirmed by FTIR where spectra displayed a shift of the amide-III peak. Films containing caffeic acid or a caffeic-ferulic acid mixture exhibited the highest radical scavenging activity, leading to a 90% antioxidant activity at equilibrium but the release rate controlled the efficacy of the system.


Assuntos
Antioxidantes/análise , Biopolímeros/química , Quitosana/química , Gelatina/química , Antioxidantes/química , Ácidos Cafeicos/análise , Ácidos Cafeicos/química , Ácidos Cumáricos/análise , Ácidos Cumáricos/química , Produtos Pesqueiros , Cinética , Permeabilidade , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Álcool Feniletílico/química , Resistência à Tração
14.
Food Chem ; 195: 11-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26575707

RESUMO

The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature.


Assuntos
Elétrons , Gelatina/efeitos da radiação , Animais , Varredura Diferencial de Calorimetria , Peixes , Radicais Livres , Gelatina/química , Propriedades de Superfície , Água/química
15.
Compr Rev Food Sci Food Saf ; 15(4): 739-752, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33401845

RESUMO

Among natural biopolymers, polysaccharides and proteins are very promising for biodegradable and edible wraps with different characteristics, so that their formulations can be tailor-made to suit the needs of a specific commodity. Films prepared from polysaccharides have good gas barrier properties but exhibit lower resistance to moisture compared to protein films (edible) or polylactide films (biodegradable). Protein-based films show better mechanical and oxygen barrier properties compared to polysaccharide films. For that reason, film performances may be enhanced by producing blend systems, where hydrocolloids (mixtures of proteins and/or polysaccharides) form a continuous and more cohesive network. However, the lower water barrier properties of hydrocolloid films and their lower mechanical strength in comparison with synthetic polymers limit their applications in food packaging. Therefore, the enhancement of biopolymer film properties has been studied to attain appropriate applications. This review provides an extensive synthesis of the improvement of the properties of edible polysaccharide-protein films by way of various chemical, enzymatic, and physical methods. These methods primarily aim at improving the mechanical resistance. They also permit to ameliorate the water and gas barrier properties and related functional properties.

16.
Int J Biol Macromol ; 80: 64-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092173

RESUMO

Wheat starch was treated by different γ-radiation doses (3, 5, 10, 20, 35 and 50 kGy). The effects of γ-radiation on structural, thermal, physicochemical, morphological and rheological properties of wheat starch were studied. The presence of free radicals after γ-radiation treatment, which number decreased with time was confirmed. Structural analysis revealed decreases in the intensities of the O-H and C-H stretches and glycosidic linkages indicating the depolymerization of amylose and probably amylopectin into shorter chain molecules, but showed that γ-radiation treatment did not affect the crystalline structure. Differential scanning calorimetric (DSC) thermograms showed the absence of significant differences in the gelatinization temperatures, as well as the corresponding transition enthalpies since the DSC parameters are related to the crystalline ordering within the granules. Apparent amylose content decreased linearly with increasing irradiation dose leading to an increase in water solubility index. An increase in the swelling power was observed after irradiation treatment until 20 kGy, followed by a rapid decrease at higher doses. Microscopic observations showed that the effect of γ-radiation was more visible on starch pastes than on starch granules. Rheological properties of the starch pastes decreased with increasing irradiation dose as a result of glycosidic bond cleavage.


Assuntos
Radicais Livres/química , Raios gama , Amido/química , Adsorção , Amilose/química , Espectroscopia de Ressonância de Spin Eletrônica , Resistência ao Cisalhamento , Solubilidade , Triticum/química , Viscosidade , Difração de Raios X
17.
J Sci Food Agric ; 94(12): 2409-19, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24425236

RESUMO

BACKGROUND: The increased use of synthetic packaging films has led to a high ecological problem due to their total non-biodegradability. Thus, there is a vital need to develop renewable and environmentally friendly bio-based polymeric materials. Films and coatings made from polysaccharide polymers, particularly chitosans and gelatins have good gas barrier properties and are envisaged more and more for applications in the biomedical and food fields, as well as for packaging. In this study a casting method was used to develop an edible plasticised film from chitosan and gelatin. Aiming to develop a blend film with enhanced properties, the effects of mixing chitosan (CS) and gelatin (G) in different proportions (CS:G, 75:25, 50:50, 25:75, w/w) on functional and physico-chemical properties have been studied. RESULTS: Mean film thickness increased linearly (R2 =0.999) with surface density of the film forming solution. An enhancement of mechanical properties by increasing the tensile strength (38.7±11 MPa for pure chitosan and 76.8±9 MPa for pure gelatin film) was also observed in blends, due to gelatin content.When the gelatin content in blend filmswas increased an improvement of both water vapour barrier properties [(4±0.3)×10(-10) g m(-1) s(-1) Pa(-1) for pure chitosan and (2.5±0.14)×10(-10) g m(-1) s(-1) Pa(-1) for pure gelatin, at 70% RH gradient] and oxygen barrier properties ((822.62±90.24)×10(-12) g m(-1) s(-1) Pa(-1) for blend film chitosan:gelatin (25:75 w/w) and (296.67±18.76)×10(-12) g m(-1) s(-1) Pa(-1) for pure gelatin was observed. Fourier transform infrared spectra of blend films showed a shift in the peak positions related to the amide groups (amide-I and amide-III) indicating interactions between biopolymers. CONCLUSIONS: Addition of gelatin in chitosan induced greater functional properties (mechanical, barrier) due to chemical interactions, suggesting an inter-penetrated network.


Assuntos
Biopolímeros/química , Quitosana/química , Embalagem de Alimentos , Gelatina/química , Animais , Bovinos , Oxigênio/química , Plastificantes/química , Solubilidade , Resistência à Tração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...