Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(50)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531963

RESUMO

Isolated, micro-metre sized diamonds are grown by micro-wave plasma chemical vapour deposition technique on Si(001) substrates. Each diamond is uniquely identified by markers milled in the Si substrate by Ga+focused ion beam. The morphology and micro-grain structure analysis, indicates that the diamonds are icosahedral or bi-crystals. Icosahedral diamonds have higher (up toσh= 2.3 GPa), and wider distribution (Δσh= 4.47 GPa) of hydrostatic stress built up at the micro-crystal grain boundaries, compared to the other crystals. The number and spectral shape of SiV-colour centres incorporated in the micro-diamonds (MDs) is analysed, and estimated by means of temperature dependent photoluminescence measurements, and Monte Carlo simulations. The Monte Carlo simulations indicates that the number of SiV-colour centres is a few thousand per MD.

2.
ACS Appl Mater Interfaces ; 14(36): 40822-40833, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36036714

RESUMO

Hydrogen production through water electrolysis is a promising method to utilize renewable energy in the context of urgent need to phase out fossil fuels. Nickel-molybdenum (NiMo) electrodes are among the best performing non-noble metal-based electrodes for hydrogen evolution reaction in alkaline media (alkaline HER). Albeit exhibiting stable performance in electrolysis at a constant power supply (i.e., constant electrolysis), NiMo electrodes suffer from performance degradation in electrolysis at an intermittent power supply (i.e., intermittent electrolysis), which is emblematic of electrolysis powered directly by renewable energy (such as wind and solar power sources). Here we reveal that NiMo electrodes were oxidized by dissolved oxygen during power interruption, leading to vanishing of metallic Ni active sites and loss of conductivity in MoOx substrate. Based on the understanding of the degradation mechanism, chromium (Cr) coating was successfully applied as a protective layer to inhibit oxygen reduction reaction (ORR) and significantly enhance the stability of NiMo electrodes in intermittent electrolysis. Further, combining experimental and Molecular Dynamics (MD) simulations, we demonstrate that the Cr coating served as a physical barrier inhibiting diffusion of oxygen, while still allowing other species to pass through. Our work offers insights into electrode behavior in intermittent electrolysis, as well as provides Cr coating as a valid method and corresponding deep understanding of the factors for stability enhancement, paving the way for the successful application of lab-scale electrodes in industrial electrolysis powered directly by renewable energy.

3.
J Colloid Interface Sci ; 623: 607-616, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35605448

RESUMO

Membrane-based photothermal crystallization - a pioneering technology for mining valuable minerals from seawater and brines - exploits self-heating nanostructured interfaces to boost water evaporation, so achieving a controlled supersaturation environment that promotes the nucleation and growth of salts. This work explores, for the first time, the use of two-dimensional graphene thin films (2D-G) and three dimensional vertically orientated graphene sheet arrays (3D-G) as potential photothermal membranes applied to the dehydration of sodium chloride, potassium chloride and magnesium sulfate hypersaline solutions, followed by salt crystallization. A systematic study sheds light on the role of vertical alignment of graphene sheets on the interfacial, light absorption and photothermal characteristics of the membrane, impacting on the water evaporation rate and on the crystal size distribution of the investigated salts. Overall, 3D-G facilitates the crystallization of the salts because of superior light-to-heat conversion leading to a 3-fold improvement of the evaporation rate with respect to 2D-G. The exploitation of sunlight graphene-based interfaces is demonstrated as a potential sustainable solution to aqueous wastes valorization via recovery in solid phase of dissolved salts using renewable solar energy.


Assuntos
Grafite , Purificação da Água , Cristalização , Grafite/química , Sais , Cloreto de Sódio , Água/química
4.
Chemosphere ; 299: 134394, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35331744

RESUMO

Interfacial solar water evaporation has attracted tremendous attention for sunlight harvesting for water purification. However, salt formation and stability of the photothermal materials (PTMs) remain a challenge that need addressing before bringing this technology to real-world applications. In this work, a nanoscale thin film of gold (Au) on a polytetrafluoroethylene (PTFE) membrane has been prepared using a magnetic sputtering technique. The fabricated membrane displays a robust mechanical strength and chemical stability arising from the adhesiveness of the thin film Au nanolayer on the PTFE membrane as well as the chemical inertness of the noble metal PTM. The Au nanolayer/PTFE membrane with cellulose sponge substrate resulted in an evaporation rate of 0.88 kg m-2 h-1 under 1 sun intensity. Remarkable salt ion rejection of 99.9% has been obtained, meeting the required standard for drinking water. Moreover, the membrane exhibited excellent stability and reusability in natural seawater and high salinity brine (150 g/L) and even in severe conditions (acidic, basic, and oxidized). No noticeable salt formation was observed on the evaporator surface after the tests. These findings reveal promising prospects for using a magnetron sputtering technique to fabricate a stable photothermal membrane for seawater and high salinity brine desalination.


Assuntos
Luz Solar , Purificação da Água , Ouro , Politetrafluoretileno , Água
5.
Nanoscale ; 14(4): 1395-1408, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35018401

RESUMO

The electrochemical synthesis of ammonia at ambient temperature and pressure has the potential to replace the conventional process for the production of ammonia. However, the low ammonia yield and poor long-term stability of catalysts for the synthesis of ammonia hinders the application of this technology. Herein, we endeavored to tackle this challenge by synthesizing 3-D vertical graphene (VG) on Ni foam via a one-step, low-temperature plasma process, which offered high conductivity and large surface area. Subsequently, the vertical graphene on Ni foam was loaded with nanolayers of ruthenium oxide (RuO2, ∼2 nm) and cerium oxide (CeO2, <20 nm) nanoparticles via magnetron sputtering. The incorporation of nanoparticle layers (RuO2 and CeO2/RuO2) on VG significantly increased the NH3 yield in KOH electrolyte. Finally, the performance and long-term stability of this composite material were successfully demonstrated by the addition of CeO2/RuO2 nanolayers on the VG electrocatalyst. The catalyst achieved an excellent performance with a high ammonia synthesis yield of 50.56 µg mgtotal cat.-1 h-1 (1.11 × 10-10 mol cm-2 s-1) during the performance evaluation period of 36 h. This observation was also verified by density functional theory calculation, where CeO2 exhibited the best catalytic performance compared to RuO2 and pristine graphene.

6.
J Neural Eng ; 18(6)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34874291

RESUMO

Objective. Brain-machine interfaces are key components for the development of hands-free, brain-controlled devices. Electroencephalogram (EEG) electrodes are particularly attractive for harvesting the neural signals in a non-invasive fashion.Approach.Here, we explore the use of epitaxial graphene (EG) grown on silicon carbide on silicon for detecting the EEG signals with high sensitivity.Main results and significance.This dry and non-invasive approach exhibits a markedly improved skin contact impedance when benchmarked to commercial dry electrodes, as well as superior robustness, allowing prolonged and repeated use also in a highly saline environment. In addition, we report the newly observed phenomenon of surface conditioning of the EG electrodes. The prolonged contact of the EG with the skin electrolytes functionalize the grain boundaries of the graphene, leading to the formation of a thin surface film of water through physisorption and consequently reducing its contact impedance more than three-fold. This effect is primed in highly saline environments, and could be also further tailored as pre-conditioning to enhance the performance and reliability of the EG sensors.


Assuntos
Interfaces Cérebro-Computador , Grafite , Eletrodos , Eletroencefalografia , Reprodutibilidade dos Testes
7.
Anal Chim Acta ; 1188: 339166, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794577

RESUMO

In this paper, a vibrating boron-doped diamond (BDD) electrode electroanalytical device and respective method for the analysis of ultralow concentrations of Cd(II) in water were studied. The enhanced mass transfer on the electrode surface was studied using Ru(NH3)6Cl3. Vibration with 133 Hz frequency enhanced the Ru(III) to Ru(II) reduction by 92.6% compared to a static electrode. The peak current of the anodic stripping voltammetry (ASV) method employed was increased by a factor of 5.3 and 4.7 for 10 and 30 µg L-1 Cd(II) concentrations, respectively, when a frequency of 200 Hz was used. A calibration plot with two linear regions was resolved between 0.01 and 1 µg L-1 and 1-30 µg L-1 with the LOD and LOQ of 0.04 µg L-1 and 0.12 µg L-1, respectively. The applicability of the device and the respective method in the analysis of real environmental samples was successfully verified by analysis of river samples and comparing the results with the ICP analysis presenting high reproducibility and trueness. According to the results of this research, the vibrating BDD electrode with the ASV method has excellent analytical performance without surface modification or regular replacement or polishing of the electrode surface. Combining the exceptional electrochemical and chemical properties of BDD with enhanced mass transfer and signal strength of vibrating electrodes makes the system especially suitable for on-site and online analysis of heavy metals.


Assuntos
Boro , Metais Pesados , Cádmio , Eletrodos , Reprodutibilidade dos Testes
8.
Small ; 17(17): e2008062, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733581

RESUMO

Fluorescent nanoparticles are widely utilized in a large range of nanoscale imaging and sensing applications. While ultra-small nanoparticles (size ≤10 nm) are highly desirable, at this size range, their photostability can be compromised due to effects such as intensity fluctuation and spectral diffusion caused by interaction with surface states. In this article, a facile, bottom-up technique for the fabrication of sub-10-nm hexagonal boron nitride (hBN) nanoparticles hosting photostable bright emitters via a catalyst-free hydrothermal reaction between boric acid and melamine is demonstrated. A simple stabilization protocol that significantly reduces intensity fluctuation by ≈85% and narrows the emission linewidth by ≈14% by employing a common sol-gel silica coating process is also implemented. This study advances a promising strategy for the scalable, bottom-up synthesis of high-quality quantum emitters in hBN nanoparticles.

9.
Sensors (Basel) ; 21(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530391

RESUMO

Surface-enhanced Raman spectroscopy (SERS) technology is an attractive method for the prompt and accurate on-site screening of illicit drugs. As portable Raman systems are available for on-site screening, the readiness of SERS technology for sensing applications is predominantly dependent on the accuracy, stability and cost-effectiveness of the SERS strip. An atmospheric-pressure plasma-assisted chemical deposition process that can deposit an even distribution of nanogold particles in a one-step process has been developed. The process was used to print a nanogold film on a paper-based substrate using a HAuCl4 solution precursor. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the gold has been fully reduced and that subsequent plasma post-treatment decreases the carbon content of the film. Results for cocaine detection using this substrate were compared with two commercial SERS substrates, one based on nanogold on paper and the currently available best commercial SERS substrate based on an Ag pillar structure. A larger number of bands associated with cocaine was detected using the plasma-printed substrate than the commercial substrates across a range of cocaine concentrations from 1 to 5000 ng/mL. A detection limit as low as 1 ng/mL cocaine with high spatial uniformity was demonstrated with the plasma-printed substrate. It is shown that the plasma-printed substrate can be produced at a much lower cost than the price of the commercial substrate.

10.
Sensors (Basel) ; 20(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187131

RESUMO

RuO2 thin films were prepared using magnetron sputtering under different deposition conditions, including direct current (DC) and radio frequency (RF) discharges, metallic/oxide cathodes, different substrate temperatures, pressures, and deposition times. The surface morphology, residual stress, composition, crystal structure, mechanical properties, and pH performances of these RuO2 thin films were investigated. The RuO2 thin films RF sputtered from a metallic cathode at 250 °C exhibited good pH sensitivity of 56.35 mV/pH. However, these films were rougher, less dense, and relatively softer. However, the DC sputtered RuO2 thin film prepared from an oxide cathode at 250 °C exhibited a pH sensitivity of 57.37 mV/pH with a smoother surface, denser microstructure and higher hardness. The thin film RF sputtered from the metallic cathode exhibited better pH response than those RF sputtered from the oxide cathode due to the higher percentage of the RuO3 phase present in this film.

11.
ACS Nano ; 14(9): 11327-11340, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790322

RESUMO

Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the oxygen evolution reaction (OER). The hybrid Ni-Fe/er-VG catalyst exhibits excellent OER performance with a mass current of 4051 A g-1 (at overpotential η = 300 mV) and turnover frequency (TOF) of 4.8 s-1 (η = 400 mV), outperforming Ni-Fe deposited on pristine VG and other metal foam supports. Angle-dependent X-ray absorption spectroscopy shows that the edge-rich VG support can preferentially template Fe-O units with a specific valence orbital alignment interacting with the unoccupied density of states on the graphene edges. This graphene edge-metal interaction was shown to facilitate the formation of undersaturated and strained Fe-sites with high valence states, while promoting the formation of redox-activated Ni species, thus improving OER performance. These findings demonstrate rational design of the graphene edge-metal interface in electrocatalysts which can be used for various energy conversion and chemical synthesis reactions.

12.
Nanomaterials (Basel) ; 9(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775248

RESUMO

The utilization of vertical graphene nanosheet (VGN) electrodes for energy storage in supercapacitors has long been desired yet remains challenging, mostly because of insufficient control of nanosheet stacking, density, surface functionality, and reactivity. Here, we report a single-step, scalable, and environment-friendly plasma-assisted process for the fabrication of densely packed yet accessible surfaces of forested VGNs (F-VGNs) using coconut oil as precursor. The morphology of F-VGNs could be controlled from a continuous thick structure to a hierarchical, cauliflower-like structure that was accessible by the electrolyte ions. The surface of individual F-VGNs was slightly oxygenated, while their interior remained oxygen-free. The fabricated thick (>10 µm) F-VGN electrodes presented specific capacitance up to 312 F/g at a voltage scan rate of 10 mV/s and 148 F/g at 500 mV/s with >99% retention after 1000 cycles. This versatile approach suggests realistic opportunities for further improvements, potentially leading to the integration of F-VGN electrodes in next-generation energy storage devices.

13.
Nanotechnology ; 30(32): 325301, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30986777

RESUMO

We report on the fabrication and evaluation of nanoscale YBa2Cu3O7-x (YBCO) constrictions using focused-ion-beam techniques for potential application as YBCO bolometers. A gold protective layer was found to be critical for supressing contamination from gallium ions in order to obtain high critical current densities. Further processing using a radio-frequency plasma to remove the gold protective layer has also been studied and was found to be effective in minimizing sample damage resulting from overheating. Current-voltage measurement indicate that the nanobridges go through the transition from superconducting to normal state with different dissipation mechanism including flux creep and hot spot formation.

14.
Mater Sci Eng C Mater Biol Appl ; 94: 150-160, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423696

RESUMO

This work describes the development of antifouling functional coatings on the surface of low density polyethylene (LDPE) films by means of atmospheric pressure non-thermal plasma (APNTP) assisted copolymerization using a mixture of acrylic acid and poly (ethylene glycol). The aim of the study was to investigate the antifouling properties of the plasma copolymerized LDPE films and the same was carried out as a function of deposition time with fixed applied potential of 14 kV. In a second stage, the plasma copolymerized LDPE films were functionalized with chitosan (CHT) to further enhance its antifouling properties. The surface hydrophilicity, structural, topographical and chemistry of the plasma copolymerized LDPE films were examined by contact angle (CA), X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Coating stability was also studied in detail over a storage time of 15 days by storing in water and air. The antifouling properties of the plasma copolymerized LDPE films were examined via protein adsorption and platelet adhesion studies. CA study showed significant changes in surface wettability after the coating process. XPS and FTIR analysis proved the presence of a dense multifunctional coating and an efficient immobilization of CHT. Substantial amendments in surface topography were observed, positively enhancing the overall surface hydrophilicity. Finally, in-vitro analysis showed excellent antifouling behavior of the surface modified LDPE films.


Assuntos
Incrustação Biológica , Quitosana/farmacologia , Gases em Plasma/química , Polietileno/química , Polimerização , Adsorção , Animais , Proteínas Sanguíneas/metabolismo , Materiais Revestidos Biocompatíveis/química , Cabras , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Espectroscopia Fotoeletrônica , Adesividade Plaquetária , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Molhabilidade , Difração de Raios X
15.
Nanotechnology ; 30(3): 035401, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444729

RESUMO

WS2 nanotubes with carbon coatings in a core-shell structure (i.e. WS2@C) are synthesized through a facile method based on the Lewis acid-activated thioglycosylation chemistry. The obtained WS2@C shows a conformal coverage of conductive amorphous carbon on the surface of WS2 after thermal treatment, with the thickness of carbon layer being controlled by adjusting the molar ratios of saccharide to nanotube during the synthesis process. When applied in lithium-ion batteries, the WS2@C structures show higher reversible capacity of 638 mAh g-1 at a current density of 500 mA g-1 and significantly improved cycling stability as compared to the pristine WS2 nanotubes. Post-mortem examinations of the electrode materials reveal that the carbon coatings could preserve the morphology of WS2 nanotubes and assist in forming stable solid electrolyte interface layers, leading to enhanced cycling stability. As such, the WS2@C structures show great potential in the application of lithium-ion batteries for achieving excellent electrochemical performances.

16.
Bioelectrochemistry ; 122: 32-39, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29518622

RESUMO

Tantalum films were deposited on negatively biased Ti6Al4V substrates using filtered cathodic vacuum arc deposition to enhance the corrosion resistance of the Ti6Al4V alloy. The effect of substrate voltage bias on the microstructure, mechanical and corrosion properties was examined and the cytocompatibility of the deposited films was verified with mammalian cell culturing. The Ta films deposited with substrate bias of -100V and -200V show a mixture of predominantly ß phase and minority of α phase. The Ta/-100V film shows adhesive failure at the Ti/Ta interface and a cohesive fracture is observed in Ta/-200V film. The Ta/-100V showed a significant improvement in corrosion resistance, which is attributed to the stable oxide layer. The in-vitro cytocompatibility of the materials was investigated using rat bone mesenchymal stem cells, and the results show that the Ta films have no adverse effect on mammalian cell adhesion and spreading proliferation.


Assuntos
Materiais Revestidos Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Tantálio/química , Titânio/química , Ligas , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Corrosão , Eletrodos , Filtração , Teste de Materiais , Próteses e Implantes , Ratos , Propriedades de Superfície , Vácuo
17.
Colloids Surf B Biointerfaces ; 155: 1-10, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384526

RESUMO

Surface modifications of metallic implants are important in order to protect the underlying metals from the harsh corrosive environment inside the human body and to minimize the losses caused by wear. Recently, researches are carried out in developing bioactive surfaces on metallic implants, which supports the growth and proliferation of cells on to these surfaces. Titanium silicon nitride (TiSiN) hard nanocomposites thin films were fabricated on Ti alloys (Ti-6Al-4V) by pulsed direct current (DC) reactive magnetron sputtering. The films were characterized for its microstructural and electrochemical behavior. The higher charge transfer resistance (Rct) and positive shift in Ecorr value of TiSiN/Ti alloys than the bare Ti-alloys indicates a better corrosion resistance offered by the TiSiN thin films to the underlying substrates. The biological response to TiSiN/Ti alloys and control bare Ti-alloys was measured in vitro using cell-based assays with two main outcomes. Firstly, neither the Ti alloy nor the TiSiN thin film was cytotoxic to cells. Secondly, the TiSiN thin film promoted differentiation of human bone cells above the bare control Ti alloy as measured by alkaline phosphatase and calcium production. TiSiN thin films provide better corrosion resistance and protect the underlying metal from the corrosive environment. The thin film surface is both biocompatible and bioactive as indicated from the cytotoxicity and biomineralization studies.


Assuntos
Ligas/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Compostos de Silício/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Ligas/química , Animais , Materiais Biocompatíveis , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Compostos de Silício/química , Propriedades de Superfície , Titânio/química
18.
Nat Commun ; 8: 14217, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134336

RESUMO

Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.


Assuntos
Técnicas Biossensoriais/instrumentação , Grafite/síntese química , Química Verde/métodos , Nanotecnologia/métodos , Ar , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Gases/química , Teste de Materiais , Nanoestruturas/química , Óleo de Soja/química , Propriedades de Superfície
19.
Nanoscale ; 8(42): 18032-18037, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27735962

RESUMO

Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.

20.
ACS Appl Mater Interfaces ; 8(11): 6802-10, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26928086

RESUMO

Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.


Assuntos
Plaquetas/metabolismo , Materiais Revestidos Biocompatíveis/química , Membranas Artificiais , Nanodiamantes/química , Adesividade Plaquetária , Titânio/química , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...