Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 3(6): 762-773, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140694

RESUMO

Chronic pain is the leading cause of disability worldwide1 and is commonly associated with comorbid disorders2. However, the role of diet in chronic pain is poorly understood. Of particular interest is the Western-style diet, enriched with ω-6 polyunsaturated fatty acids (PUFAs) that accumulate in membrane phospholipids and oxidise into pronociceptive oxylipins3,4. Here we report that mice administered an ω-6 PUFA-enriched diet develop persistent nociceptive hypersensitivities, spontaneously active and hyper-responsive glabrous afferent fibres and histologic markers of peripheral nerve damage reminiscent of a peripheral neuropathy. Linoleic and arachidonic acids accumulate in lumbar dorsal root ganglia, with increased liberation via elevated phospholipase (PLA)2 activity. Pharmacological and molecular inhibition of PLA2G7 or diet reversal with high levels of ω-3 PUFAs attenuate nociceptive behaviours, neurophysiologic abnormalities and afferent histopathology induced by high ω-6 intake. Additionally, ω-6 PUFA accumulation exacerbates allodynia observed in preclinical inflammatory and neuropathic pain models and is strongly correlated with multiple pain indices of clinical diabetic neuropathy. Collectively, these data reveal dietary enrichment with ω-6 PUFAs as a new aetiology of peripheral neuropathy and risk factor for chronic pain and implicate multiple therapeutic considerations for clinical pain management.


Assuntos
Biomarcadores , Dor Crônica/etiologia , Dor Crônica/metabolismo , Suscetibilidade a Doenças , Ácidos Graxos Ômega-6/metabolismo , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Dieta , Modelos Animais de Doenças , Ácidos Graxos Insaturados/metabolismo , Gânglios Espinais/metabolismo , Metabolismo dos Lipídeos , Camundongos , Fosfolipases A2/metabolismo , Fatores de Risco
3.
Mol Pain ; 11: 30, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26007300

RESUMO

BACKGROUND: Pain in the head neck area is an early symptom in oral cancer, supporting the hypothesis that cancer cells control the activities of surrounding nociceptors at the site of the tumor. Several reports implicate TRPV1 and TRPA1 in cancer pain, although there is a large gap in knowledge since the mechanisms for tumor-induced activation of these TRP receptors are unknown. Interestingly, TRP-active lipids such as linoleic acid, arachidonic acid, hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid are significantly elevated in the saliva of oral cancer patients compared to normal patients, supporting a possible linkage between these lipids and oral cancer pain. We therefore hypothesize that oral squamous cell carcinomas release certain lipids that activate TRPV1 and/or TRPA1 on sensory neurons, contributing to the development of oral cancer pain. METHODS: Lipid extracts were made from conditioned media of three human oral squamous cell carcinoma (OSCC) cell lines as well as one normal human oral keratinocytes cell line. These were then injected intraplantarly into rat hindpaws to measure spontaneous nocifensive behavior, as well as thermal and mechanical allodynia. For interventional experiments, the animals were pretreated with AMG517 (TRPV1 antagonist) or HC030031 (TRPA1 antagonist) prior to extract injection. RESULTS: These studies demonstrate that lipids released from the three OSCC cell lines, but not the normal cell line, were capable of producing significant spontaneous nocifensive behaviors, as well as thermal and mechanical allodynia. Notably each of the cell lines produced a different magnitude of response for each of three behavioral assays. Importantly, pre-treatment with a TRPVI antagonist blocked lipid-mediated nocifensive and thermal hypersensitivity, but not mechanical hypersensitivity. In addition, pre-treatment with a TRPA1 antagonist only reversed thermal hypersensitivity without affecting lipid-induced nocifensive behavior or mechanical allodynia. CONCLUSIONS: These data reveal a novel mechanism for cancer pain and provide strong direction for future studies evaluating the cellular mechanism regulating the TRP-active lipids by OSCC tumors.


Assuntos
Neoplasias Bucais/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Humanos , Hiperalgesia/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Masculino , Dor/metabolismo , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores
4.
PLoS One ; 9(4): e93696, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691516

RESUMO

Osteoporosis is a silent disease, characterized by a porous bone micro-structure that enhances risk for fractures and associated disabilities. Senile, or age-related osteoporosis (SO), affects both men and women, resulting in increased morbidity and mortality. However, cellular and molecular mechanisms underlying senile osteoporosis are not fully known. Recent studies implicate the accumulation of reactive oxygen species (ROS) and increased oxidative stress as key factors in SO. Herein, we show that loss of caspase-2, a cysteine aspartate protease involved in oxidative stress-induced apoptosis, results in total body and femoral bone loss in aged mice (20% decrease in bone mineral density), and an increase in bone fragility (30% decrease in fracture strength). Importantly, we demonstrate that genetic ablation or selective inhibition of caspase-2 using zVDVAD-fmk results in increased numbers of bone-resorbing osteoclasts and enhanced tartrate-resistant acid phosphatase (TRAP) activity. Conversely, transfection of osteoclast precursors with wild type caspase-2 but not an enzymatic mutant, results in a decrease in TRAP activity. We demonstrate that caspase-2 expression is induced in osteoclasts treated with oxidants such as hydrogen peroxide and that loss of caspase-2 enhances resistance to oxidants, as measured by TRAP activity, and decreases oxidative stress-induced apoptosis of osteoclasts. Moreover, oxidative stress, quantified by assessment of the lipid peroxidation marker, 4-HNE, is increased in Casp2-/- bone, perhaps due to a decrease in antioxidant enzymes such as SOD2. Taken together, our data point to a critical and novel role for caspase-2 in maintaining bone homeostasis by modulating ROS levels and osteoclast apoptosis during conditions of enhanced oxidative stress that occur during aging.


Assuntos
Apoptose/genética , Osso e Ossos/metabolismo , Caspase 2/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Fosfatase Ácida , Aldeídos/administração & dosagem , Animais , Osso e Ossos/patologia , Caspase 2/genética , Homeostase/genética , Isoenzimas , Peroxidação de Lipídeos/genética , Camundongos , Osteoclastos/patologia , Osteoporose/patologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Fosfatase Ácida Resistente a Tartarato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA