Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(28): 6165-6175, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32049376

RESUMO

A tetra-stable donor-acceptor [2]rotaxane 1⋅4PF6 has been synthesized. The dumbbell component is comprised of an oxyphenylene (OP), a tetrathiafulvalene (TTF), a monopyrrolo-TTF (MPTTF), and a hydroquinone (HQ) unit, which can act as recognition sites (stations) for the tetra-cationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+ ). The TTF and the MPTTF stations are located in the middle of the dumbbell component and are connected by a triethylene glycol (TEG) chain in such a way that the pyrrole moiety of the MPTTF station points toward the TTF station, while the TTF and MPTTF stations are flanked by the OP and HQ stations on their left hand side and right hand side, respectively. The [2]rotaxane was characterized in solution by 1 H NMR spectroscopy and cyclic voltammetry. The spectroscopic data revealed that the majority (77 %) of the tetra-stable [2]rotaxane 14+ exist as the translational isomer 1⋅MPTTF4+ in which the CBPQT4+ ring encircles the MPTTF station. The electrochemical studies showed that CBPQT4+ in 1⋅MPTTF4+ undergoes ring translation as result of electrostatic repulsion from the oxidized MPTTF unit. Following tetra-oxidation of 1⋅MPTTF4+ , a high-energy state of 18+ was obtained (i.e., 1⋅TEG8+ ) in which the CBPQT4+ ring was located on the TEG linker connecting the di-oxidized TTF2+ and MPTTF2+ units. 1 H NMR spectroscopy carried out in CD3 CN at 298 K on a chemically oxidized sample of 1⋅MPTTF4+ revealed that the metastable state 1⋅TEG8+ is only short-lived with a lifetime of a few minutes and it was found that 70 % of the positively charged CBPQT4+ ring moved from 1⋅TEG8+ to the HQ station, while 30 % moved to the much weaker OP station. These results clearly demonstrate that the CBPQT4+ ring can cross both an MPTTF2+ and a TTF2+ electrostatic barrier and that the free energy of activation required to cross MPTTF2+ is ca. 0.5 kcal mol-1 smaller as compared to TTF2+ .

2.
Beilstein J Org Chem ; 11: 1112-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199667

RESUMO

The electron-donor and unique redox properties of the tetrathiafulvalene (TTF, 1) moiety have led to diverse applications in many areas of chemistry. Monopyrrolotetrathiafulvalenes (MPTTFs, 4) and bispyrrolotetrathiafulvalenes (BPTTFs, 5) are useful structural motifs and have found widespread use in fields such as supramolecular chemistry and molecular electronics. Protocols enabling the synthesis of functionalised MPTTFs and BPTTFs are therefore of broad interest. Herein, we present the synthesis of a range of functionalised MPTTF and BPTTF species. Firstly, the large-scale preparation of the precursor species N-tosyl-(1,3)-dithiolo[4,5-c]pyrrole-2-one (6) is described, as well as the synthesis of the analogue N-tosyl-4,6-dimethyl-(1,3)-dithiolo[4,5-c]pyrrole-2-one (7). Thereafter, we show how 6 and 7 can be used to prepare BPTTFs using homocoupling reactions and functionalised MPTTFs using cross-coupling reactions with a variety of 1,3-dithiole-2-thiones (19). Subsequently, the incorporation of more complex functionality is discussed. We show how the 2-cyanoethyl protecting group can be used to afford MPTTFs functionalised with thioethers, exemplified by a series of ethylene glycol derivatives. Additionally, the merits of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an alternative to the most common deprotecting agent, CsOH·H2O are discussed. Finally, we show how a copper-mediated Ullman-type reaction can be applied to the N-arylation of MPTTFs and BPTTFs using a variety of aryl halides.

3.
Chemistry ; 21(24): 8816-25, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25933417

RESUMO

An electron donor-acceptor dyad based on a polychlorotriphenylmethyl (PTM) radical subunit linked to a tetrathiafulvalene (TTF) unit through a π-conjugated N-phenyl-pyrrole-vinylene bridge has been synthesized and characterized. The intramolecular electron transfer process and magnetic properties of the radical dyad have been evaluated by cyclic voltammetry, UV/Vis spectroscopy, vibrational spectroscopy, and ESR spectroscopy in solution and in the solid state. The self-assembling abilities of the radical dyad and of its protonated non-radical analogue have been investigated by X-ray crystallographic analysis, which revealed that the radical dyad produced a supramolecular architecture with segregated donor and acceptor units in which the TTF subunits were arranged in 1D herringbone-type stacks. Analysis of the X-ray data at different temperatures suggests that the two inequivalent molecules that form the asymmetric unit of the crystal of the radical dyad evolve into an opposite degree of electronic delocalization as the temperature decreases.


Assuntos
Compostos Heterocíclicos/química , Transporte de Elétrons , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...