Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(36): 22181-22190, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093723

RESUMO

Ionanofluids (INFs), nanoparticles dispersed into a base fluid, e.g. an ionic liquid, are a novel class of alternative heat transfer fluids. Addition of nanoparticles to a base ionic liquid is the prime reason for an enhancement in the thermophysical properties of ionanofluids. However, due to very limited research on ionanofluids, further studies are required to understand changes in the isobaric heat capacity of ionanofluids as a function of size of cations of the base ionic liquid structure and concentration of nanoparticles. Herein, isobaric heat capacity was measured as a function of temperature for the prepared ionanofluid samples from a series of imidazolium ionic liquids and multi walled carbon nanotubes (MWCNTs). Moreover, the influence of the size of cations on the isobaric heat capacity enhancement mechanism and the stability of ionanofluid samples was studied. Furthermore, experimental isobaric heat capacity data were assessed by a novel non-statistical data analysis method named mathematical gnostics (MG). MG marginal analysis was used to evaluate the most probable values from the measured data set. A robust linear regression along a gnostic influence function was also used to find the best fit to correlate the measured data.

2.
Chem Commun (Camb) ; 54(42): 5261-5267, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29761191

RESUMO

For the third time, a Faraday Discussion addressed ionic liquids. Encompassing the wealth of research in this field, the contributions ranged from fundamental insights to the diverse applications of ionic liquids. Lively discussions initiated in the lecture hall and during poster sessions then seamlessly continued during the social program.

4.
Chemphyschem ; 13(7): 1825-35, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22378633

RESUMO

We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...