Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25224-25231, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191283

RESUMO

The introduction of nonfullerene acceptors (NFA) facilitated the realization of high-efficiency organic solar cells (OSCs); however, OSCs suffer from relatively large losses in open-circuit voltage (VOC) as compared to inorganic or perovskite solar cells. Further enhancement in power conversion efficiency requires an increase in VOC. In this work, we take advantage of the high dipole moment of twisted perylene-diimide (TPDI) as a nonfullerene acceptor (NFA) to enhance the VOC of OSCs. In multiple bulk heterojunction solar cells incorporating TPDI with three polymer donors (PTB7-Th, PM6 and PBDB-T), we observed a VOC enhancement by modifying the cathode with a polyethylenimine (PEIE) interlayer. We show that the dipolar interaction between the TPDI NFA and PEIE─enhanced by the general tendency of TPDI to form J-aggregates─plays a crucial role in reducing nonradiative voltage losses under a constant radiative limit of VOC. This is aided by comparative studies with PM6:Y6 bulk heterojunction solar cells. We hypothesize that incorporating NFAs with significant dipole moments is a feasible approach to improving the VOC of OSCs.

2.
Adv Sci (Weinh) ; 10(15): e2300057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995051

RESUMO

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next-generation optical communication and wearable electronics. However, it is still a challenge to achieve a big memory window (threshold voltage response ∆Vth ) for phototransistors. Here, a nanographene-based heterojunction phototransistor memory with large ∆Vth responses is reported. Exposure to low intensity light (25.7 µW cm-2 ) for 1 s yields a memory window of 35 V, and the threshold voltage shift is found to be larger than 140 V under continuous light illumination. The device exhibits both good photosensitivity (3.6 × 105 ) and memory properties including long retention time (>1.5 × 105  s), large hysteresis (45.35 V), and high endurance for voltage-erasing and light-programming. These findings demonstrate the high application potential of nanographenes in the field of optoelectronics. In addition, the working principle of these hybrid nanographene-organic structured heterojunction phototransistor memory devices is described which provides new insight into the design of high-performance organic phototransistor devices.

3.
Adv Mater ; 34(38): e2205015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35924776

RESUMO

Wavelength-discriminating systems typically consist of heavy benchtop-based instruments, comprising diffractive optics, moving parts, and adjacent detectors. For simple wavelength measurements, such as lab-on-chip light source calibration or laser wavelength tracking, which do not require polychromatic analysis and cannot handle bulky spectroscopy instruments, lightweight, easy-to-process, and flexible single-pixel devices are attracting increasing attention. Here, a device is proposed for monotonously transforming wavelength information into the time domain with room-temperature phosphorescence at the heart of its functionality, which demonstrates a resolution down to 1 nm and below. It is solution-processed from a single host-guest system comprising organic room-temperature phosphors and colloidal quantum dots. The share of excited triplet states within the photoluminescent layer is dependent on the excitation wavelength and determines the afterglow intensity of the film, which is tracked by a simple photodetector. Finally, an all-organic thin-film wavelength sensor and two applications are demonstrated where this novel measurement concept successfully replaces a full spectrometer.

4.
Adv Sci (Weinh) ; 9(24): e2200379, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35780500

RESUMO

A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.

6.
Adv Sci (Weinh) ; 9(7): e2105113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994114

RESUMO

Highly responsive organic photodetectors allow a plethora of applications in fields like imaging, health, security monitoring, etc. Photomultiplication-type organic photodetectors (PM-OPDs) are a desirable option due to their internal amplification mechanism. However, for such devices, significant gain and low dark currents are often mutually excluded since large operation voltages often induce high shot noise. Here, a fully vacuum-processed PM-OPD is demonstrated using trap-assisted electron injection in BDP-OMe:C60 material system. By applying only -1 V, compared with the self-powered working condition, the responsivity is increased by one order of magnitude, resulting in an outstanding specific detectivity of ≈1013  Jones. Remarkably, the superior detectivity in the near-infrared region is stable and almost voltage-independent up to -10 V. Compared with two photovoltaic-type photodetectors, these PM-OPDs exhibit the great potential to be easily integrated with state-of-the-art readout electronics in terms of their high responsivity, fast response speed, and bias-independent specific detectivity. The employed vacuum fabrication process and the easy-to-adapt PM-OPD concept enable seamless upscaling of production, paving the way to a commercially relevant photodetector technology.


Assuntos
Eletrônica
7.
Mater Horiz ; 9(1): 220-251, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34704585

RESUMO

Omnipresent quality monitoring in food products, blood-oxygen measurement in lightweight conformal wrist bands, or data-driven automated industrial production: Innovation in many fields is being empowered by sensor technology. Specifically, organic photodetectors (OPDs) promise great advances due to their beneficial properties and low-cost production. Recent research has led to rapid improvement in all performance parameters of OPDs, which are now on-par or better than their inorganic counterparts, such as silicon or indium gallium arsenide photodetectors, in several aspects. In particular, it is possible to directly design OPDs for specific wavelengths. This makes expensive and bulky optical filters obsolete and allows for miniature detector devices. In this review, recent progress of such narrowband OPDs is systematically summarized covering all aspects from narrow-photo-absorbing materials to device architecture engineering. The recent challenges for narrowband OPDs, like achieving high responsivity, low dark current, high response speed, and good dynamic range are carefully addressed. Finally, application demonstrations covering broadband and narrowband OPDs are discussed. Importantly, several exciting research perspectives, which will stimulate further research on organic-semiconductor-based photodetectors, are pointed out at the very end of this review.


Assuntos
Gálio , Semicondutores , Silício/química , Análise Espectral
8.
Adv Mater ; 33(44): e2102967, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515381

RESUMO

Spectroscopic photodetection plays a key role in many emerging applications such as context-aware optical sensing, wearable biometric monitoring, and biomedical imaging. Photodetectors based on organic semiconductors open many new possibilities in this field. However, ease of processing, tailorable optoelectronic properties, and sensitivity for faint light are still significant challenges. Here, the authors report a novel concept for a tunable spectral detector by combining an innovative transmission cavity structure with organic absorbers to yield narrowband organic photodetection in the wavelength range of 400-1100 nm, fabricated in a full-vacuum process. Benefiting from this strategy, one of the best performed narrowband organic photodetectors is achieved with a finely wavelength-selective photoresponse (full-width-at-half-maximum of ≈40 nm), ultrahigh specific detectivity above 1014 Jones, the maximum response speed of 555 kHz, and a large dynamic range up to 168 dB. Particularly, an array of transmission cavity organic photodetectors is monolithically integrated on a small substrate to showcase a miniaturized spectrometer application, and a true proof-of-concept transmission spectrum measurement is successfully demonstrated. The excellent performance, the simple device fabrication as well as the possibility of high integration of this new concept challenge state-of-the-art low-noise silicon photodetectors and will mature the spectroscopic photodetection into technological realities.

9.
Nat Commun ; 12(1): 4259, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267210

RESUMO

Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at -10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.

10.
Nat Mater ; 20(10): 1407-1413, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112978

RESUMO

Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending. We use oligothiophenes with different numbers of thiophene rings as an example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller, effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this energy-level engineering strategy for optoelectronic devices.

11.
ChemSusChem ; 14(17): 3622-3631, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111333

RESUMO

Organic solar cells are approaching power conversion efficiencies of other thin-film technologies. However, in order to become truly market competitive, the still substantial voltage losses need to be reduced. Here, the synthesis and characterization of four novel arylamine-based push-pull molecular donors was described, two of them exhibiting a methyl group at the para-position of the external phenyl ring of the arylamine block. Assessing the charge-transfer state properties and the effects of methylation on the open-circuit voltage of the device showed that devices based on methylated versions of the molecular donors exhibited reduced voltage losses due to decreased non-radiative recombination. Modelling suggested that methylation resulted in a tighter interaction between donor and acceptor molecules, turning into a larger oscillator strength to the charge-transfer states, thereby ensuing reduced non-radiative decay rates.

12.
ACS Appl Mater Interfaces ; 13(19): 23239-23246, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33960768

RESUMO

Extraction barriers are usually undesired in organic semiconductor devices since they lead to reduced device performance. In this work, we intentionally introduce an extraction barrier for holes, leading to nonlinear photoresponse. The effect is utilized in near-infrared (NIR) organic photodetectors (OPDs) to perform distance measurements, as delineated in the focus-induced photoresponse technique (FIP). The extraction barrier is introduced by inserting an anodic interlayer with deeper highest occupied molecular orbital (HOMO), compared to the donor material, into a well-performing OPD. With increasing irradiance, achieved by decreasing the illumination spot area on the OPD, a higher number of holes pile up at the anode, counteracting the built-in field and increasing charge-carrier recombination in the bulk. This intended nonlinear response of the photocurrent to the irradiance allows determining the distance between the OPD and the light source. We demonstrate fully vacuum-deposited organic NIR optical distance photodetectors with a detection area up to 256 mm2 and detection wavelengths at 850 and 1060 nm. Such NIR OPDs have a high potential for precise, robust, low-cost, and simple optical distance measurement setups.

13.
ACS Appl Mater Interfaces ; 13(10): 12603-12609, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660501

RESUMO

Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.

14.
Nat Commun ; 12(1): 471, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473110

RESUMO

Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices.

15.
Nat Commun ; 12(1): 551, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483507

RESUMO

Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor-acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor-acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity.

16.
Adv Mater ; 32(47): e2003818, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33078513

RESUMO

Organic photodetectors (OPDs) with a performance comparable to that of conventional inorganic ones have recently been demonstrated for the visible regime. However, near-infrared photodetection has proven to be challenging and, to date, the true potential of organic semiconductors in this spectral range (800-2500 nm) remains largely unexplored. In this work, it is shown that the main factor limiting the specific detectivity (D*) is non-radiative recombination, which is also known to be the main contributor to open-circuit voltage losses. The relation between open-circuit voltage, dark current, and noise current is demonstrated using four bulk-heterojunction devices based on narrow-gap donor polymers. Their maximum achievable D* is calculated alongside a large set of devices to demonstrate an intrinsic upper limit of D* as a function of the optical gap. It is concluded that OPDs have the potential to be a useful technology up to 2000 nm, given that high external quantum efficiencies can be maintained at these low photon energies.

17.
Nat Commun ; 11(1): 4617, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934236

RESUMO

Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.

18.
Nat Commun ; 11(1): 2047, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321910

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Commun ; 11(1): 1488, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198376

RESUMO

The low-energy edge of optical absorption spectra is critical for the performance of solar cells, but is not well understood in the case of organic solar cells (OSCs). We study the microscopic origin of exciton bands in molecular blends and investigate their role in OSCs. We simulate the temperature dependence of the excitonic density of states and low-energy absorption features, including low-frequency molecular vibrations and multi-exciton hybridisation. For model donor-acceptor blends featuring charge-transfer excitons, our simulations agree very well with temperature-dependent experimental absorption spectra. We unveil that the quantum effect of zero-point vibrations, mediated by electron-phonon interaction, causes a substantial exciton bandwidth and reduces the open-circuit voltage, which is predicted from electronic and vibronic molecular parameters. This effect is surprisingly strong at room temperature and can substantially limit the OSC's efficiency. Strategies to reduce these vibration-induced voltage losses are discussed for a larger set of systems and different heterojunction geometries.

20.
Nat Commun ; 11(1): 833, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047157

RESUMO

Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...