Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 130, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744692

RESUMO

KEY MESSAGE: Genome-wide association study of color spaces across the four cultivated Capsicum spp. revealed a shared set of genes influencing fruit color, suggesting mechanisms and pathways across Capsicum species are conserved during the speciation. Notably, Cytochrome P450 of the carotenoid pathway, MYB transcription factor, and pentatricopeptide repeat-containing protein are the major genes responsible for fruit color variation across the Capsicum species. Peppers (Capsicum spp.) rank among the most widely consumed spices globally. Fruit color, serving as a determinant for use in food colorants and cosmeceuticals and an indicator of nutritional contents, significantly influences market quality and price. Cultivated Capsicum species display extensive phenotypic diversity, especially in fruit coloration. Our study leveraged the genetic variance within four Capsicum species (Capsicum baccatum, Capsicum chinense, Capsicum frutescens, and Capsicum annuum) to elucidate the genetic mechanisms driving color variation in peppers and related Solanaceae species. We analyzed color metrics and chromatic attributes (Red, Green, Blue, L*, a*, b*, Luminosity, Hue, and Chroma) on samples cultivated over six years (2015-2021). We resolved genomic regions associated with fruit color diversity through the sets of SNPs obtained from Genotyping by Sequencing (GBS) and genome-wide association study (GWAS) with a Multi-Locus Mixed Linear Model (MLMM). Significant SNPs with FDR correction were identified, within the Cytochrome P450, MYB-related genes, Pentatricopeptide repeat proteins, and ABC transporter family were the most common among the four species, indicating comparative evolution of fruit colors. We further validated the role of a pentatricopeptide repeat-containing protein (Chr01:31,205,460) and a cytochrome P450 enzyme (Chr08:45,351,919) via competitive allele-specific PCR (KASP) genotyping. Our findings advance the understanding of the genetic underpinnings of Capsicum fruit coloration, with developed KASP assays holding potential for applications in crop breeding and aligning with consumer preferences. This study provides a cornerstone for future research into exploiting Capsicum's diverse fruit color variation.


Assuntos
Capsicum , Frutas , Fenótipo , Pigmentação , Polimorfismo de Nucleotídeo Único , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Pigmentação/genética , Cor , Genótipo , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Variação Genética
2.
Plant Physiol ; 195(2): 911-923, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38466177

RESUMO

Type-IV glandular trichomes, which only occur in the juvenile developmental phase of the cultivated tomato (Solanum lycopersicum), produce acylsugars that broadly protect against arthropod herbivory. Previously, we introgressed the capacity to retain type-IV trichomes in the adult phase from the wild tomato, Solanum galapagense, into the cultivated species cv. Micro-Tom (MT). The resulting MT-Galapagos enhanced trichome (MT-Get) introgression line contained 5 loci associated with enhancing the density of type-IV trichomes in adult plants. We genetically dissected MT-Get and obtained a subline containing only the locus on Chromosome 2 (MT-Get02). This genotype displayed about half the density of type-IV trichomes compared to the wild progenitor. However, when we stacked the gain-of-function allele of WOOLLY, which encodes a homeodomain leucine zipper IV transcription factor, Get02/Wo exhibited double the number of type-IV trichomes compared to S. galapagense. This discovery corroborates previous reports positioning WOOLLY as a master regulator of trichome development. Acylsugar levels in Get02/Wo were comparable to the wild progenitor, although the composition of acylsugar types differed, especially regarding fewer types with medium-length acyl chains. Agronomical parameters of Get02/Wo, including yield, were comparable to MT. Pest resistance assays showed enhanced protection against silverleaf whitefly (Bemisia tabaci), tobacco hornworm (Manduca sexta), and the fungus Septoria lycopersici. However, resistance levels did not reach those of the wild progenitor, suggesting the specificity of acylsugar types in the pest resistance mechanism. Our findings in trichome-mediated resistance advance the development of robust, naturally resistant tomato varieties, harnessing the potential of natural genetic variation. Moreover, by manipulating only 2 loci, we achieved exceptional results for a highly complex, polygenic trait, such as herbivory resistance in tomato.


Assuntos
Solanum lycopersicum , Tricomas , Tricomas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Herbivoria , Herança Multifatorial , Manduca/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
4.
Front Plant Sci ; 14: 1200999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615029

RESUMO

Anthracnose, caused by the fungal pathogen Colletotrichum spp., is one of the most significant tomato diseases in the United States and worldwide. No commercial cultivars with anthracnose resistance are available, limiting resistant breeding. Cultivars with genetic resistance would significantly reduce crop losses, reduce the use of fungicides, and lessen the risks associated with chemical application. A recombinant inbred line (RIL) mapping population (N=243) has been made from a cross between the susceptible US28 cultivar and the resistant but semiwild and small-fruited 95L368 to identify quantitative trait loci (QTLs) associated with anthracnose resistance. The RIL population was phenotyped for resistance by inoculating ripe field-harvested tomato fruits with Colletotrichum coccodes for two seasons. In this study, we identified twenty QTLs underlying resistance, with a range of phenotypic variance of 4.5 to 17.2% using a skeletal linkage map and a GWAS. In addition, a QTLseq analysis was performed using deep sequencing of extreme bulks that validated QTL positions identified using traditional mapping and resolved candidate genes underlying various QTLs. We further validated AP2-like ethylene-responsive transcription factor, N-alpha-acetyltransferase (NatA), cytochrome P450, amidase family protein, tetratricopeptide repeat, bHLH transcription factor, and disease resistance protein RGA2-like using PCR allelic competitive extension (PACE) genotyping. PACE assays developed in this study will enable high-throughput screening for use in anthracnose resistance breeding in tomato.

5.
Plant Mol Biol ; 112(4-5): 213-223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37351824

RESUMO

Anthocyanins are a family of water-soluble vacuolar pigments present in almost all flowering plants. The chemistry, biosynthesis and functions of these flavonoids have been intensively studied, in part due to their benefit for human health. Given that they are efficient antioxidants, intense research has been devoted to studying their possible roles against damage caused by reactive oxygen species (ROS). However, the redox homeostasis established between antioxidants and ROS is important for plant growth and development. On the one hand, high levels of ROS can damage DNA, proteins, and lipids, on the other, they are also required for cell signaling, plant development and stress responses. Thus, a balance is needed in which antioxidants can remove excessive ROS, while not precluding ROS from triggering important cellular signaling cascades. In this article, we discuss how anthocyanins and ROS interact and how a deeper understanding of the balance between them could help improve plant productivity, nutritional value, and resistance to stress, while simultaneously maintaining proper cellular function and plant growth.


Assuntos
Antocianinas , Antioxidantes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Antocianinas/metabolismo , Oxirredução , Desenvolvimento Vegetal , Estresse Oxidativo
7.
J Nutr ; 153(6): 1668-1679, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990182

RESUMO

BACKGROUND: Living in low-income countries often restricts the consumption of adequate protein and animal protein. OBJECTIVES: This study aimed to investigate the effects of feeding low-protein diets on growth and liver health using proteins recovered from animal processing. METHODS: Female Sprague-Dawley rats (aged 28 d) were randomly assigned (n = 8 rats/group) to be fed standard purified diets with 0% or 10% kcal protein that was comprised of either carp, whey, or casein. RESULTS: Rats that were fed low-protein diets showed higher growth but developed mild hepatic steatosis compared to rats that were fed a no-protein diet, regardless of the protein source. Real-time quantitative polymerase chain reactions targeting the expression of genes involved in liver lipid homeostasis were not significantly different among groups. Global RNA-sequencing technology identified 9 differentially expressed genes linked to folate-mediated 1-carbon metabolism, endoplasmic reticulum (ER) stress, and metabolic diseases. Canonical pathway analysis revealed that mechanisms differed depending on the protein source. ER stress and dysregulated energy metabolism were implicated in hepatic steatosis in carp- and whey-fed rats. In contrast, impaired liver one-carbon methylations, lipoprotein assembly, and lipid export were implicated in casein-fed rats. CONCLUSIONS: Carp sarcoplasmic protein showed comparable results to commercially available casein and whey protein. A better understanding of the molecular mechanisms in hepatic steatosis development can assist formulation of proteins recovered from food processing into a sustainable source of high-quality protein.


Assuntos
Caseínas , Fígado Gorduroso , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Dieta com Restrição de Proteínas , Fígado Gorduroso/etiologia , Proteínas do Soro do Leite , Lipídeos
8.
Hortic Res ; 10(2): uhac254, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751272

RESUMO

The accumulation of anthocyanins is a well-known response to abiotic stresses in many plant species. However, the effects of anthocyanin accumulation on light absorbance and photosynthesis are unknown . Here, we addressed this question using a promoter replacement line of tomato constitutively expressing a MYB transcription factor (ANTHOCYANIN1, ANT1) that leads to anthocyanin accumulation. ANT1-overexpressing plants displayed traits associated with shade avoidance response: thinner leaves, lower seed germination rate, suppressed side branching, increased chlorophyll concentration, and lower photosynthesis rates than the wild type. Anthocyanin-rich leaves exhibited higher absorbance of light in the blue and red ends of the spectrum, while higher anthocyanin content in leaves provided photoprotection to high irradiance. Analyses of gene expression and primary metabolites content showed that anthocyanin accumulation produces a reconfiguration of transcriptional and metabolic networks that is consistent with, but not identical to those described for the shade avoidance response. Our results provide novel insights about how anthocyanins accumulation affects the trade-off between photoprotection and growth.

9.
Nutr Neurosci ; 26(4): 332-344, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35296223

RESUMO

OBJECTIVES: Apple pomace, a waste byproduct of apple processing, is rich in nutrients (e.g. polyphenols and soluble fiber) with the potential to be neuroprotective. The aim of this study was to employ RNA-sequencing (RNASeq) technology to investigate diet-gene interactions in the hypothalamus of rats after feeding a Western diet calorically substituted with apple pomace. METHODS: Adolescent (age 21-29 days) female Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to consume either a purified standard diet, Western (WE) diet, or Western diet calorically substituted with 10% apple pomace (WE/AP) for 8 weeks. RNA-seq was performed (n = 5 rats/group) to determine global differentially expressed genes in the hypothalamus. RESULTS: RNA-seq results comparing rats fed WE to WE/AP revealed 15 differentially expressed genes in the hypothalamus. Caloric substitution of WE diet with 10% apple pomace downregulated (q < 0.06) five genes implicated in brain aging and neurodegenerative disorders: synuclein alpha, phospholipase D family member 5, NADH dehydrogenase Fe-S protein 6, choline O-acetyltransferase, and frizzled class receptor 6. DISCUSSION: Altered gene expression of these five genes suggests that apple pomace ameliorated synthesis of the neurotransmitter, acetylcholine, in rats fed a WE diet. Apple pomace, a rich source of antioxidant polyphenols and soluble fiber, has been shown to reverse nonalcoholic fatty liver disease (NAFLD). Diet-induced NAFLD decreases hepatic de novo synthesis of choline, a precursor to acetylcholine. Based on preclinical evidence, apple pomace has the potential to be a sustainable functional food for maintaining brain function and for reducing the risk of neurodegeneration.


Assuntos
Malus , Hepatopatia Gordurosa não Alcoólica , Ratos , Feminino , Animais , Dieta Ocidental/efeitos adversos , Ratos Sprague-Dawley , Acetilcolina , Polifenóis/farmacologia , RNA
10.
Cells ; 11(17)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36078031

RESUMO

Root nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. The study aimed to clarify not only the impact of over-expressing five terpene synthesis genes isolated from G. max and Salvia guaranitica on soybean nodulation signaling pathway, but also on the strigolactones pathway. The obtained results revealed that the over expression of GmFDPS, GmGGPPS, SgGPS, SgFPPS, and SgLINS genes enhanced the root nodule numbers, fresh weight of nodules, root, and root length. Moreover, the terpene content in the transgenic G. max hairy roots was estimated. The results explored that the monoterpenes, sesquiterpenes and diterpenes were significantly increased in transgenic soybean hairy roots in comparison with the control. Our results indicate the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. The study provides novel insights for understanding the epistatic relationship between terpenoids, root development, and nodulation in soybean.


Assuntos
Glycine max , Nodulação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Glycine max/genética , Glycine max/metabolismo , Terpenos/metabolismo
11.
Plants (Basel) ; 11(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567239

RESUMO

MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 ß, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding.

12.
Plants (Basel) ; 11(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631734

RESUMO

The leaves of the wild tomato Solanumgalapagense harbor type-IV glandular trichomes (GT) that produce high levels of acylsugars (AS), conferring insect resistance. Conversely, domesticated tomatoes (S. lycopersicum) lack type-IV trichomes on the leaves of mature plants, preventing high AS production, thus rendering the plants more vulnerable to insect predation. We hypothesized that cultivated tomatoes engineered to harbor type-IV trichomes on the leaves of adult plants could be insect-resistant. We introgressed the genetic determinants controlling type-IV trichome development from S.galapagense into cv. Micro-Tom (MT) and created a line named "Galapagos-enhanced trichomes" (MT-Get). Mapping-by-sequencing revealed that five chromosomal regions of S. galapagense were present in MT-Get. Further genetic mapping showed that S. galapagense alleles in chromosomes 1, 2, and 3 were sufficient for the presence of type-IV trichomes on adult organs but at lower densities. Metabolic and gene expression analyses demonstrated that type-IV trichome density was not accompanied by the AS production and exudation in MT-Get. Although the plants produce a significant amount of acylsugars, those are still not enough to make them resistant to whiteflies. We demonstrate that type-IV glandular trichome development is insufficient for high AS accumulation. The results from our study provided additional insights into the steps necessary for breeding an insect-resistant tomato.

13.
Plant Sci ; 312: 111018, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620453

RESUMO

The genus Coffea (Rubiaceae) encompasses a group of perennial plant species, including a commodity crop from which seeds are roasted, ground, and infused to make one of the most appreciated beverages in the world. As an important tropical crop restricted to specific regions of the world, coffee production is highly susceptible to the effects of environmental instabilities (i.e., local year-to-year weather fluctuations and global climate change) and threatening pest pressures, not to mention an increasing quality rigor by consumers in industrialized countries. Specialized metabolites are substances that largely affect plant-environment interactions as well as how consumers experience agricultural products. Membrane transporters are key targets, albeit understudied, for understanding and tailoring the spatiotemporal distribution of specialized metabolites as they mediate and control molecular trafficking and substance accumulation. Therefore, we analyzed the transportome of C. canephora encoded within the 25,574 protein-coding genes annotated in the genome of this species and identified 1847 putative membrane transporters. Following, we mined 152 transcriptional profiles of C. canephora and C. arabica and performed a comprehensive co-expression analysis to identify transporters potentially involved in the accumulation of specialized metabolites associated with beverage quality and bioactivity attributes. In toto, this report points to an avenue of possibilities on Coffea genomic and transcriptomic data mining for genetic breeding strategies, which can lead to the development of new, resilient varieties for more sustainable coffee production systems.


Assuntos
Cafeína/metabolismo , Ácido Clorogênico/metabolismo , Coffea/genética , Coffea/metabolismo , Proteínas de Membrana Transportadoras/genética , Sementes/genética , Sementes/metabolismo , Cafeína/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Transcriptoma
14.
Front Plant Sci ; 12: 783269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003167

RESUMO

In legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. We characterized six terpenoid synthesis genes from Salvia officinalis by overexpressing SoTPS6, SoNEOD, SoLINS, SoSABS, SoGPS, and SoCINS in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes. Interestingly, overexpression of some of the terpenoid and terpene genes increased nodule numbers, nodule and root fresh weight, and root length, while others inhibited these phenotypes. These results suggest the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. This study provides novel insights into epistatic interactions between terpenoids, root development, and nodulation in soybean root biology and open new avenues for soybean research.

15.
J Exp Bot ; 72(4): 1349-1369, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33130852

RESUMO

Malonyl-CoA:flavonoid acyltransferases (MaTs) modify isoflavones, but only a few have been characterized for activity and assigned to specific physiological processes. Legume roots exude isoflavone malonates into the rhizosphere, where they are hydrolyzed into isoflavone aglycones. Soybean GmMaT2 was highly expressed in seeds, root hairs, and nodules. GmMaT2 and GmMaT4 recombinant enzymes used isoflavone 7-O-glucosides as acceptors and malonyl-CoA as an acyl donor to generate isoflavone glucoside malonates. GmMaT2 had higher activity towards isoflavone glucosides than GmMaT4. Overexpression in hairy roots of GmMaT2 and GmMaT4 produced more malonyldaidzin, malonylgenistin, and malonylglycitin, and resulted in more nodules than control. However, only GmMaT2 knockdown (KD) hairy roots showed reduced levels of malonyldaidzin, malonylgenistin, and malonylglycitin, and, likewise, reduced nodule numbers. These were consistent with the up-regulation of only GmMaT2 by rhizobial infection, and higher expression levels of early nodulation genes in GmMaT2- and GmMaT4-overexpressing roots, but lower only in GmMaT2-KD roots compared with control roots. Higher malonyl isoflavonoid levels in transgenic hairy roots were associated with higher levels of isoflavones in root exudates and more nodules, and vice versa. We suggest that GmMaT2 participates in soybean nodulation by catalyzing isoflavone malonylation and affecting malonyl isoflavone secretion for activation of Nod factor and nodulation.


Assuntos
Aciltransferases/fisiologia , Glycine max , Isoflavonas , Malonil Coenzima A/fisiologia , Nodulação , Aciltransferases/genética , Malonil Coenzima A/genética , Glycine max/enzimologia , Glycine max/genética
16.
Food Res Int ; 137: 109677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233254

RESUMO

Plucked tea leaves can be processed into black tea (Camellia sinensis), which is rich in health-promoting molecules, including flavonoid antioxidants. During black tea processing, theaflavins (TFs) and thearubigins (TRs) are generated via the successive oxidation of catechins by endogenous polyphenol oxidase (PPO)- or peroxidase (POD)-mediated reactions. This process must be well controlled to achieve the proper TF/TR ratio, which is an important quality parameter of the tea beverage. However, little is known about the POD/PPO catalyzed TF formation process at the molecular genetic level. Here, we identified and characterized the POD genes responsible for TF production in tea. Genome-wide analysis of POD/PPO family genes, metabolite profiling, and expression analysis of PPO/POD genes in tea leaves enabled us to select several PPO/POD genes potentially involved in TF production. Differential gene expression in plant tissues and enzyme activity in several tea varieties traditionally used for processing of various beverage types indicate that black tea processing primarily depends on PPO/POD activity. Among these POD/PPO genes, the POD CsGPX3 is involved in the generation of TFs during black tea processing. The capacity of PPO/POD-catalysed TF production is potentially used for controlling catechin oxidation during black tea processing and could be used to create molecular markers for breeding of tea plant varieties suitable for the production of high-quality black tea beverages.


Assuntos
Camellia sinensis , Catequina , Antioxidantes , Biflavonoides , Camellia sinensis/genética , Catequina/análise , Peroxidase , Melhoramento Vegetal , Chá
17.
J Mol Med (Berl) ; 98(12): 1727-1736, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067676

RESUMO

The world is currently facing a novel viral pandemic (SARS-CoV-2), and large-scale testing is central to decision-making for the design of effective policies and control strategies to minimize its impact on the global population. However, testing for the presence of the virus is a major bottleneck in tracking the spreading of the disease. Given its adaptability regarding the nucleotide sequence of target regions, RT-qPCR is a strong ally to reveal the rapid geographical spreading of novel viruses. We assessed PCR variations in the SARS-CoV-2 diagnosis taking into account public genome sequences and diagnosis kits used by different countries. We analyzed 226 SARS-CoV-2 genome sequences from samples collected by March 22, 2020. Our work utilizes a phylogenetic approach that reveals the early evolution of the virus sequence as it spreads around the globe and informs the design of RT-qPCR primers and probes. The quick expansion of testing capabilities of a country during a pandemic is largely impaired by the availability of adequately trained personnel on RNA isolation and PCR analysis, as well as the availability of hardware (thermocyclers). We propose that rapid capacity development can circumvent these bottlenecks by training medical and non-medical personnel with some laboratory experience, such as biology-related graduate students. Furthermore, the use of thermocyclers available in academic and commercial labs can be promptly calibrated and certified to properly conduct testing during a pandemic. A decentralized, fast-acting training and testing certification pipeline will better prepare us to manage future pandemics.


Assuntos
Teste para COVID-19/genética , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/isolamento & purificação , COVID-19/genética , COVID-19/virologia , Humanos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
18.
J Food Sci ; 85(8): 2544-2553, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32632919

RESUMO

Consisting of 25 to 30% of protein in carp, water-soluble sarcoplasmic proteins lost in wash water, have been recovered and freeze-dried into a protein-rich powder. Study objectives were to evaluate protein quality and safety of a silver carp sarcoplasm derived protein powder (CSP) compared to commercial protein supplements, casein, and whey. In vivo protein quality assessment of CSP showed a lower (P < 0.05) protein digestibility corrected amino acid score compared to the commercial protein sources. Despite greater (P < 0.05) fecal amino acid excretion in casein-fed rats, there were no significant differences in liver and muscle amino acid profiles. All low (10% kcal) protein diets supported growth with the normal range. However, whey protein supplementation resulted in greater (P < 0.05) adiposity. CSP, casein, or whey-fed rats showed no differences in major organ weights, renal damage biomarkers, or bone indices. Collectively, results indicated CSP was safe with protein quality comparable to casein. PRACTICAL APPLICATION: As much as 40 percent of protein in fish can be lost due to sarcoplasmic protein solubilization in processing wash water. Silver carp sarcoplasm protein powder may have similar commercial potential as a sustainable and nutritious alternative to whey and casein proteins. This project aimed to verify the protein quality and safety of this economical protein source.


Assuntos
Carpas , Proteínas Alimentares/análise , Proteínas de Peixes/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Caseínas/análise , Caseínas/metabolismo , Proteínas Alimentares/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Músculos/química , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Proteínas do Soro do Leite/análise , Proteínas do Soro do Leite/metabolismo
19.
Front Plant Sci ; 11: 848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670320

RESUMO

Tea (Camellia sinensis L.) leaves synthesize and concentrate a vast array of galloylated catechins (e.g., EGCG and ECG) and non-galloylated catechins (e.g., EGC, catechin, and epicatechin), together constituting 8%-24% of the dry leaf mass. Galloylated catechins account for a major portion of soluble catechins in tea leaves (up to 75%) and make a major contribution to the astringency and bitter taste of the green tea, and their pharmacological activity for human health. However, the catechin galloylation mechanism in tea plants is largely unknown at molecular levels. Previous studies indicated that glucosyltransferases and serine carboxypeptidase-like acyltransferases (SCPL) might be involved in the process. However, details about the roles of SCPLs in the biosynthesis of galloylated catechins remain to be elucidated. Here, we performed the genome-wide identification of SCPL genes in the tea plant genome. Several SCPLs were grouped into clade IA, which encompasses previously characterized SCPL-IA enzymes with an acylation function. Twenty-eight tea genes in this clade were differentially expressed in young leaves and vegetative buds. We characterized three SCPL-IA enzymes (CsSCPL11-IA, CsSCPL13-IA, CsSCPL14-IA) with galloylation activity toward epicatechins using recombinant enzymes. Not only the expression levels of these SCPLIA genes coincide with the accumulation of galloylated catechins in tea plants, but their recombinant enzymes also displayed ß-glucogallin:catechin galloyl acyltransferase activity. These findings provide the first insights into the identities of genes encoding glucogallin:catechin galloyl acyltransferases with an active role in the biosynthesis of galloylated catechins in tea plants.

20.
Nutrients ; 10(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513881

RESUMO

Apple pomace, which is a waste byproduct of processing, is rich in several nutrients, particularly dietary fiber, indicating potential benefits for diseases that are attributed to poor diets, such as non-alcoholic fatty liver disease (NAFLD). NAFLD affects over 25% of United States population and is increasing in children. Increasing fruit consumption can influence NAFLD. The study objective was to replace calories in standard or Western diets with apple pomace to determine the effects on genes regulating hepatic lipid metabolism and on risk of NAFLD. Female Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to isocaloric diets of AIN-93G and AIN-93G/10% w/w apple pomace (AIN/AP) or isocaloric diets of Western (45% fat, 33% sucrose) and Western/10% w/w apple pomace (Western/AP) diets for eight weeks. There were no significant effects on hepatic lipid metabolism in rats fed AIN/AP. Western/AP diet containing fiber-rich apple pomace attenuated fat vacuole infiltration, elevated monounsaturated fatty acid content, and triglyceride storage in the liver due to higher circulating bile and upregulated hepatic DGAT2 gene expression induced by feeding a Western diet. The study results showed the replacement of calories in Western diet with apple pomace attenuated NAFLD risk. Therefore, apple pomace has the potential to be developed into a sustainable functional food for human consumption.


Assuntos
Dieta Ocidental , Fibras na Dieta/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Malus , Ração Animal , Animais , Fibras na Dieta/administração & dosagem , Feminino , Fígado/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...