Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301695, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545996

RESUMO

Quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs), yet most QD-based LSCs suffer from toxic metal composition and color tinting. UV-selective harvesting QDs can enable visible transparency, but their development is restricted by large reabsorption losses and low photoluminescence quantum yield (PLQY). The developed here Ag, Mn: ZnInS2/ZnS QDs show a high PLQY of 53% due to the passivating effect of ZnS shell. These QDs selectively absorb UV light and emit orange-red light with a large Stokes shift of 180 nm. A LSC of 5 × 5 × 0.2 cm3, fabricated using a poly(lauryl methacrylate) (PLMA) as a matrix, maintains 87% of integrated PL after 7 h of UV exposure. The QD-PLMA achieved 90.7% average visible transparency (AVT) and a color rendering index (CRI) of 95.8, which is close to plain PLMA (AVT = 90.8%; CRI = 99.5), yielding excellent visible light transparency. Incorporating Si-PVs at LSC edges, the Ag, Mn: ZIS/ZnS QD-LSC achieved an optical efficiency of 1.42%, ranking competitively among high-performing UV-harvesting LSCs.

2.
Small Methods ; 8(2): e2300133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37075734

RESUMO

Thick-shell colloidal quantum dots (QDs) are promising building blocks for solar technologies due to their size/composition/shape-tunable properties. However, most well-performed thick-shell QDs suffer from frequent use of toxic metal elements including Pb and Cd, and inadequate light absorption in the visible and near-infrared (NIR) region due to the wide bandgap of the shell. In this work, eco-friendly AgInSe2 /AgInS2 core/shell QDs, which are optically active in the NIR region and are suitable candidates to fabricate devices for solar energy conversion, are developed. Direct synthesis suffers from simultaneously controlling the reactivity of multiple precursors, instead, a template-assisted cation exchange method is used. By modulating the monolayer growth of template QDs, gradient AgInSeS shell layers are incorporated into AgInSe2 /AgInS2 QDs. The resulting AgInSe2 /AgInSeS/AgInS2 exhibits better charge transfer than AgInSe2 /AgInS2 due to their favorable electronic band alignment, as predicted by first-principle calculations and confirmed by transient fluorescence spectroscopy. The photoelectrochemical cells fabricated with AgInSe2 /AgInSeS/AgInS2 QDs present ≈1.5-fold higher current density and better stability compared to AgInSe2 /AgInS2 . The findings define a promising approach toward multinary QDs and pave the way for engineering the QDs' electronic band structures for solar-energy conversion.

3.
Small ; 20(16): e2306453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032174

RESUMO

Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H2) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood. Here, by regulating four types of CdSe/CdS core/shell QDs with different core sizes (diameter of 2.8, 3.1, 3.5, and 4.8 nm) while the thickness of CdS shell remains the same (thickness of 2.0 ± 0.1 nm), the Type II, Quasi-Type II, and Type I core/shell architecture are successfully formed. Among these, the optimized CdSe/CdS/TiO2 photoelectrode with core size of 3.5 nm can achieve the saturated photocurrent density (Jph) of 17.4 mA cm-2 under standard one sun irradiation. When such cores are further optimized by capping alloyed shells, the Jph can reach values of 22 mA cm2 which is among the best-performed electrodes based on colloidal QDs.

4.
Small ; 19(30): e2300606, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035987

RESUMO

Solar-driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H2 ) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p-n heterojunctions based on composite metal oxides. Herein, a MOF-on-MOF (metal-organic framework) template is employed as the precursor to synthesize In2 O3 /CuO p-n heterojunction composite. After incorporation of small amounts of graphene nanoribbons (GNRs), the optimized PEC devices exhibited a maximum current density of 1.51 mA cm-2 (at 1.6 V vs RHE) under one sun illumination (AM 1.5G, 100 mW cm-2 ), which is approximately four times higher than that of the reference device based on only In2 O3 photoanodes. The improvement in the performance of these hybrid anodes is attributed to the presence of a p-n heterojunction that enhances the separation efficiency of photogenerated electron-hole pairs and suppresses charge recombination, as well as the presence of GNRs that can increase the conductivity by offering better path for electron transport, thus reducing the charge transfer resistance. The proposed MOF-derived In2 O3 /CuO p-n heterojunction composite is used to demonstrate a high-performance PEC device for hydrogen generation.

5.
ACS Appl Mater Interfaces ; 14(49): 54790-54802, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36455158

RESUMO

Charge separation, transmission, and light absorption properties are critical to determining the performance of photoelectrochemical (PEC) devices. An important strategy to control such properties is based on using heterostructured materials. Herein, a tunable zero-dimensional (0D)/two-dimensional (2D) heterostructure is designed based on quantum dots (QDs) and 2D nanosheets (NSs). Specifically, eco-friendly Zn-doped CuInS2 QDs prepared by hot injection were anchored on hierarchical (2D/2D) MoS2/rGO (MG) NSs through a facile sonication-assisted method to develop a 0D/2D/2D heterojunction-based photoelectrode for solar hydrogen production. The interfacial structure and band alignment between the proposed 0D QDs and 2D/2D MG NSs were engineered by modulating the Zn molar ratio during the QD synthesis. As proof of concept, the optimized 0D/2D/2D photoanode exhibits almost five times higher PEC activity than MG/CuInS2 and MoS2/Zn-CuInS2 NSs due to the enhanced light absorption, efficient charge separation, and transmission. Zn doping and the presence of graphene are essential in enhancing performance in the proposed heterostructure, reducing recombination of charge carriers, and improving sunlight absorption. This work shows how optimal band alignment control and carbon addition can facilitate charge transfer, enabling the development of highly efficient PEC devices based on 0D/2D/2D heterostructure nanocomposites.

6.
Small ; 18(24): e2201815, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35521950

RESUMO

Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.

7.
RSC Adv ; 12(19): 11621-11627, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481069

RESUMO

This article presents a proof-of-concept to recycle microbrewery waste as a carbon source for synthesizing carbon dots (CDs). A simple method has been developed to synthesize water-soluble CDs based on microwave irradiation of brewery spent grain. The structures and optical properties of the CDs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The effects of reaction time, temperature and pH on the properties of carbon dots were studied. These CDs were found to be spherical with an average diameter of 5.3 nm, N-doped, containing many functional groups (hydroxyl, ethers, esters, carboxyl and amino groups), and to exhibit good photoluminescence with a fluorescent quantum yield of 14%. Finally, the interaction between carbon dots and metal ions was investigated towards developing CDs as a sensing technology for water treatment, food quality and safety detection.

8.
Small Methods ; 5(8): e2100109, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34927862

RESUMO

Photoelectrochemical (PEC) solar-driven hydrogen production is a promising route to convert solar energy into chemical energy using semiconductors as active materials. However, the performance is still far from satisfactory due to a limited absorption range and rapid charge recombination. Compared to 3D semiconductors, 0D/2D nanohybrids may exhibit better PEC performance, due to the formation of an intimate interface between the two semiconductors that can inhibit carrier recombination. Herein, a photoelectrode based on a 0D/2D heterojunction is constructed by 0D metal chalcogenide quantum dots (QDs) and hierarchical 2D Zn-MoS2 nanosheets (NSs). The effect of PbS, CdS, and their composite PbS@CdS QDs is analyzed by depositing them onto Zn-MoS2 NSs using an in situ process. This distinctive heterojunction can leverage the light harvesting capabilities of QDs with the catalytic performance of Zn-MoS2 . Compared to Zn-MoS2 , Zn-MoS2 /PbS, and Zn-MoS2 /CdS, the obtained 0D/2D heterostructure based on the composite Zn-MoS2 /PbS@CdS has a significantly enhanced photocurrent. The synergistic effect between 0D/2D heterojunction, the extended absorption range of QDs, and the strong coupling and band alignment between them lead to superior solar-driven PEC performance. This work can provide a new platform to construct multifunctional 0D/2D nanohybrids for optoelectronic applications, not limited to PEC devices.

9.
J Chem Phys ; 153(8): 084705, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872869

RESUMO

Ferroelectric materials may be used as effective photoelectrocatalysts for water splitting due to enhanced charge carrier separation driven by their spontaneous polarization induced internal electric field. Compared to other ferroelectric materials, BiFeO3 exhibits a high catalytic efficiency due to its comparatively smaller bandgap, which enables light absorption from a large part of the solar spectrum and its higher bulk ferroelectric polarization. Here, we compare the photoelectrochemical properties of three different BiFeO3 morphologies, namely, nanofibers, nanowebs, and thin films synthesized via electrospinning, directly on fluorine-doped tin oxide (FTO) coated glass substrates. A significant photocathodic current in the range from -86.2 to -56.5 µA cm-2 at -0.4 V bias (vs Ag/AgCl) has been recorded for all three morphologies in 0.1M Na2SO4 aqueous solution (pH = 6.8). Among these morphologies, BiFeO3 nanofibers exhibit higher efficiency because of their larger surface area and improved charge separation resulting from rapid diffusion of photoinduced charge carriers along the axis of the nanofiber. In the case of BiFeO3 nanofibers, we obtained the highest photocurrent density of -86.2 µA/cm2 at -0.4 V bias (vs Ag/AgCl electrode) and an onset potential of 0.22 V. We also observed that the onset potential of the photocathodic current can be increased by applying a positive polarization voltage, which leads to favorable bending of band edges at the electrode/electrolyte interface resulting in increased charge carrier separation.

10.
ACS Appl Mater Interfaces ; 11(14): 13185-13193, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30892871

RESUMO

The photoelectric properties of multiferroic double-perovskite Bi2FeCrO6 (BFCO), such as above-band gap photovoltages, switchable photocurrents, and bulk photovoltaic effects, have recently been explored for potential applications in solar technology. Here, we report the fabrication of photoelectrodes based on n-type ferroelectric (FE) semiconductor BFCO heterojunctions coated with p-type transparent conducting oxides (TCOs) by pulsed laser deposition and their application for photoelectrochemical (PEC) water oxidation. The photocatalytic properties of the bare BFCO photoanodes can be improved by controlling the FE polarization state. However, the charge recombination as well as the limited charge transfer kinetics in the photoanode/electrolyte cause major energy loss and thus hinder the PEC performance. We show that this problem may be addressed by the deposition of an ultrathin p-type NiO layer on the photoanode to enhance the charge transport kinetics and reduce charge recombination at surface-trapped states for increased surface band bending. A fourfold enhancement of photocurrent density, up to 0.4 mA cm-2 (at +1.23 V vs RHE), a best performance of stability over 4 h, and a high incident photon-to-current efficiency (∼3.7%) were achieved under 1 sun illumination in such p-NiO/n-BFCO heterojunction photoanodes. These studies reveal the optimization of PEC performance by polarization switching of BFCO and the successful achievement of p-TCOs/n-FE heterojunction photoanodes that are able to sustain water oxidation that is stable for many hours.

11.
Small ; 14(51): e1801668, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30294898

RESUMO

Metal chalcogenide quantum dots (QDs) are among the most promising materials as light harvesters in all-inorganic systems for applications in solar cells and production of solar fuels. The electronic band structure of composite QDs formed by lead and cadmium chalcogenides directly grafted on highly oriented pyrolytic graphite surfaces through successive ionic layer absorption and reaction is investigated. Atomic force microscopy and Kelvin probe force microscopy (KPFM) are applied to investigate PbS, CdS, and PbS/CdS QD systems. The variation of the surface potential of individual QDs is measured, investigating the evolution of the electronic band structure as a function of QD size and composition. A shift of the Fermi level toward more negative values occurs when QD size is increased. The shift is more pronounced in CdS than in PbS, while the composite PbS/CdS exhibits an intermediate behavior. The calculated shift is in good agreement with the experiments. These results highlight the ability of KPFM to directly measure the electronic band structure in individual QDs of metal chalcogenide composites. This feature regulates charge dynamics in composite systems, thereby affecting device performance. This work provides valuable insights for applications in several fields, in which charge injection plays a major role.

12.
Sci Rep ; 8(1): 12885, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150702

RESUMO

In recent years, hybrid organic-inorganic halide perovskites have been widely studied for the low-cost fabrication of a wide range of optoelectronic devices, including impressive perovskite-based solar cells. Amongst the key factors influencing the performance of these devices, recent efforts have focused on tailoring the granularity and microstructure of the perovskite films. Albeit, a cost-effective technique allowing to carefully control their microstructure in ambient environmental conditions has not been realized. We report on a solvent-antisolvent ambient processed CH3NH3PbI3-xClx based thin films using a simple and robust solvent engineering technique to achieve large grains (>5 µm) having excellent crystalline quality and surface coverage with very low pinhole density. Using optimized treatment (75% chlorobenzene and 25% ethanol), we achieve highly-compact perovskite films with 99.97% surface coverage to produce solar cells with power conversion efficiencies (PCEs) up-to 14.0%. In these planar solar cells, we find that the density and size of the pinholes are the dominant factors that affect their overall performances. This work provides a promising solvent treatment technique in ambient conditions and paves the way for further optimization of large area thin films and high performance perovskite solar cells.

13.
Nanoscale ; 9(43): 16843-16851, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29072746

RESUMO

We designed a facile approach for the synthesis of PbS quantum dots (QDs) using thiourea and lead acetate as sources of sulfur and lead, respectively. The sizes of the PbS QDs could be systematically controlled by simply adjusting the reaction parameters. Cd post-treatment via a cation exchange method was performed to increase the stability of QDs. As a proof of concept, colloidal PbS QDs synthesized by using air-stable thiourea were employed as light harvesters for both (i) solar driven photoelectrochemical (PEC) hydrogen generation and (ii) QDs sensitized solar cells (QDSSCs). For PEC hydrogen generation, similar saturated photocurrent densities are observed by using thiourea compared to bis(trimethylsilyl) sulfide, which is air-sensitive and unstable. For QDSSCs, the devices fabricated with QDs synthesized from thiourea reveal a better performance compared to devices fabricated with QDs synthesized from traditional bis(trimethylsilyl) sulfide. Our work demonstrates that this synthetic method is a promising alternative to the existing methodologies of PbS QDs and holds great potential for future solar technologies.

14.
Adv Sci (Weinh) ; 3(3): 1500345, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27668151

RESUMO

A new hybrid photoelectrochemical photoanode is developed to generate H2 from water. The anode is composed of a TiO2 mesoporous frame functionalized by colloidal core@shell quantum dots (QDs) followed by CdS and ZnS capping layers. Saturated photocurrent density as high as 11.2 mA cm-2 in a solar-cell-driven photoelectrochemical system using near-infrared QDs is obtained.

15.
Small ; 12(38): 5354-5365, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515385

RESUMO

Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of "giant" CdSe/Cdx Pb1-x S core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes "giant" CdSe/Cdx Pb1-x S QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100-300 K). Subsequently these thick alloyed-shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300-600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure-CdS-shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in "giant" QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs.

16.
Sci Rep ; 6: 23312, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26988622

RESUMO

We report the fabrication and testing of dye sensitized solar cells (DSSC) based on tin oxide (SnO2) particles of average size ~20 nm. Fluorine-doped tin oxide (FTO) conducting glass substrates were treated with TiOx or TiCl4 precursor solutions to create a blocking layer before tape casting the SnO2 mesoporous anode. In addition, SnO2 photoelectrodes were treated with the same precursor solutions to deposit a TiO2 passivating layer covering the SnO2 particles. We found that the modification enhances the short circuit current, open-circuit voltage and fill factor, leading to nearly 2-fold increase in power conversion efficiency, from 1.48% without any treatment, to 2.85% achieved with TiCl4 treatment. The superior photovoltaic performance of the DSSCs assembled with modified photoanode is attributed to enhanced electron lifetime and suppression of electron recombination to the electrolyte, as confirmed by electrochemical impedance spectroscopy (EIS) carried out under dark condition. These results indicate that modification of the FTO and SnO2 anode by titania can play a major role in maximizing the photo conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA