Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 229(Supplement_2): S132-S136, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37681583

RESUMO

This paper describes the methods for developing and optimizing a laboratory-developed assay (LDA) for detecting clade II human mpox virus using the automated Panther Fusion platform and Open Access software. Various concentrations of reagents in a primer-probe mix were tested to optimize the LDA. The LDA was validated using 10 previously characterized positive and 10 negative human mpox samples, resulting in 95% accuracy and 100% precision. The LDA resulted in 100% specificity among previously tested HSV1-, HSV2-, and VZV-positive human samples. Several spiked media extensions were also validated and achieved 98% accuracy and 100% precision across all collection media types. The assay's limit of detection was calculated to be 1.475 copies/reaction, and the polymerase chain reaction efficiency resulted in 89.87% (slope, -3.5911; R2 = 0.9947). The methods described here can be applied to the rapid optimization and development of LDAs for many possible pathogens of public health importance.


Assuntos
Monkeypox virus , Vírus , Humanos , Acesso à Informação , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase
2.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115872

RESUMO

Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the U.S. swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as "swine-origin" or "human-origin" due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as "swine-origin" variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source, future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts, resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and nonhuman hosts, resulting in human and nonhuman origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Pandemias/veterinária , Zoonoses/virologia , Adulto , Idoso , Animais , Cães , Feminino , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/transmissão , Células Madin Darby de Rim Canino , Masculino , Neuraminidase/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Suínos , Proteínas Virais/genética , Zoonoses/transmissão
3.
J Virol Methods ; 228: 151-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26640122

RESUMO

In this study, a multicenter evaluation of the Life Technologies TaqMan(®) Array Card (TAC) with 21 custom viral and bacterial respiratory assays was performed on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The goal of the study was to demonstrate the analytical performance of this platform when compared to identical individual pathogen specific laboratory developed tests (LDTs) designed at the Centers for Disease Control and Prevention (CDC), equivalent LDTs provided by state public health laboratories, or to three different commercial multi-respiratory panels. CDC and Association of Public Health Laboratories (APHL) LDTs had similar analytical sensitivities for viral pathogens, while several of the bacterial pathogen APHL LDTs demonstrated sensitivities one log higher than the corresponding CDC LDT. When compared to CDC LDTs, TAC assays were generally one to two logs less sensitive depending on the site performing the analysis. Finally, TAC assays were generally more sensitive than their counterparts in three different commercial multi-respiratory panels. TAC technology allows users to spot customized assays and design TAC layout, simplify assay setup, conserve specimen, dramatically reduce contamination potential, and as demonstrated in this study, analyze multiple samples in parallel with good reproducibility between instruments and operators.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/normas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Bactérias/genética , Bactérias/isolamento & purificação , Centers for Disease Control and Prevention, U.S. , Humanos , Microfluídica/métodos , Microfluídica/normas , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reprodutibilidade dos Testes , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Estados Unidos , Vírus/genética , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...