Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Neurol ; 15: 1341661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333611

RESUMO

Objectives: On phenotypic and neuroanatomical grounds, music exposure might potentially affect the clinical expression of behavioural variant frontotemporal dementia (bvFTD). However, this has not been clarified. Methods: 14 consecutive patients with bvFTD fulfilling consensus diagnostic criteria were recruited via a specialist cognitive clinic. Earlier life musical experience, current musical listening habits and general socio-emotional behaviours were scored using a bespoke semi-quantitative musical survey and standardised functional scales, completed with the assistance of patients' primary caregivers. Associations of musical scores with behavioural scales were assessed using a linear regression model adjusted for age, sex, educational attainment and level of executive and general cognitive impairment. Results: Greater earlier life musical experience was associated with significantly lower Cambridge Behavioural Inventory (Revised) scores (ß ± SE = -17.2 ± 5.2; p = 0.01) and higher Modified Interpersonal Reactivity Index (MIRI) perspective-taking scores (ß ± SE = 2.8 ± 1.1; p = 0.03), after adjusting for general cognitive ability. Number of hours each week currently spent listening to music was associated with higher MIRI empathic concern (ß ± SE = 0.7 ± 0.21; p = 0.015) and MIRI total scores (ß ± SE = 1.1 ± 0.34; p = 0.014). Discussion: Musical experience in earlier life and potentially ongoing regular music listening may ameliorate socio-emotional functioning in bvFTD. Future work in larger cohorts is required to substantiate the robustness of this association, establish its mechanism and evaluate its clinical potential.

2.
Brain ; 146(10): 4065-4076, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37184986

RESUMO

Successful communication in daily life depends on accurate decoding of speech signals that are acoustically degraded by challenging listening conditions. This process presents the brain with a demanding computational task that is vulnerable to neurodegenerative pathologies. However, despite recent intense interest in the link between hearing impairment and dementia, comprehension of acoustically degraded speech in these diseases has been little studied. Here we addressed this issue in a cohort of 19 patients with typical Alzheimer's disease and 30 patients representing the three canonical syndromes of primary progressive aphasia (non-fluent/agrammatic variant primary progressive aphasia; semantic variant primary progressive aphasia; logopenic variant primary progressive aphasia), compared to 25 healthy age-matched controls. As a paradigm for the acoustically degraded speech signals of daily life, we used noise-vocoding: synthetic division of the speech signal into frequency channels constituted from amplitude-modulated white noise, such that fewer channels convey less spectrotemporal detail thereby reducing intelligibility. We investigated the impact of noise-vocoding on recognition of spoken three-digit numbers and used psychometric modelling to ascertain the threshold number of noise-vocoding channels required for 50% intelligibility by each participant. Associations of noise-vocoded speech intelligibility threshold with general demographic, clinical and neuropsychological characteristics and regional grey matter volume (defined by voxel-based morphometry of patients' brain images) were also assessed. Mean noise-vocoded speech intelligibility threshold was significantly higher in all patient groups than healthy controls, and significantly higher in Alzheimer's disease and logopenic variant primary progressive aphasia than semantic variant primary progressive aphasia (all P < 0.05). In a receiver operating characteristic analysis, vocoded intelligibility threshold discriminated Alzheimer's disease, non-fluent variant and logopenic variant primary progressive aphasia patients very well from healthy controls. Further, this central hearing measure correlated with overall disease severity but not with peripheral hearing or clear speech perception. Neuroanatomically, after correcting for multiple voxel-wise comparisons in predefined regions of interest, impaired noise-vocoded speech comprehension across syndromes was significantly associated (P < 0.05) with atrophy of left planum temporale, angular gyrus and anterior cingulate gyrus: a cortical network that has previously been widely implicated in processing degraded speech signals. Our findings suggest that the comprehension of acoustically altered speech captures an auditory brain process relevant to daily hearing and communication in major dementia syndromes, with novel diagnostic and therapeutic implications.


Assuntos
Doença de Alzheimer , Afasia Primária Progressiva , Afasia , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Compreensão , Fala , Encéfalo/patologia , Afasia/patologia , Afasia Primária Progressiva/complicações , Testes Neuropsicológicos
3.
Cortex ; 164: 90-111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207412

RESUMO

Inattention and hyperactivity are cardinal symptoms of Attention Deficit Hyperactivity Disorder (ADHD). These characteristics have also been observed across a range of other neurodevelopmental conditions, such as autism and dyspraxia, suggesting that they might best be studied across diagnostic categories. Here, we evaluated the associations between inattention and hyperactivity behaviours and features of the structural brain network (connectome) in a large transdiagnostic sample of children (Centre for Attention, Learning, and Memory; n = 383). In our sample, we found that a single latent factor explains 77.6% of variance in scores across multiple questionnaires measuring inattention and hyperactivity. Partial Least-Squares (PLS) regression revealed that variability in this latent factor could not be explained by a linear component representing nodewise properties of connectomes. We then investigated the type and extent of neural heterogeneity in a subset of our sample with clinically-elevated levels of inattention and hyperactivity. Multidimensional scaling combined with k-means clustering revealed two neural subtypes in children with elevated levels of inattention and hyperactivity (n = 232), differentiated primarily by nodal communicability-a measure which demarcates the extent to which neural signals propagate through specific brain regions. These different clusters had similar behavioural profiles, which included high levels of inattention and hyperactivity. However, one of the clusters scored higher on multiple cognitive assessment measures of executive function. We conclude that inattention and hyperactivity are so common in children with neurodevelopmental difficulties because they emerge through multiple different trajectories of brain development. In our own data, we can identify two of these possible trajectories, which are reflected by measures of structural brain network topology and cognition.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Conectoma , Criança , Humanos , Cognição , Encéfalo , Função Executiva
4.
Brain Commun ; 5(2): fcad027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942157

RESUMO

Abnormal reward processing is a hallmark of neurodegenerative diseases, most strikingly in frontotemporal dementia. However, the phenotypic repertoire and neuroanatomical substrates of abnormal reward behaviour in these diseases remain incompletely characterized and poorly understood. Here we addressed these issues in a large, intensively phenotyped patient cohort representing all major syndromes of sporadic frontotemporal dementia and Alzheimer's disease. We studied 27 patients with behavioural variant frontotemporal dementia, 58 with primary progressive aphasia (22 semantic variant, 24 non-fluent/agrammatic variant and 12 logopenic) and 34 with typical amnestic Alzheimer's disease, in relation to 42 healthy older individuals. Changes in behavioural responsiveness were assessed for canonical primary rewards (appetite, sweet tooth, sexual activity) and non-primary rewards (music, religion, art, colours), using a semi-structured survey completed by patients' primary caregivers. Changes in more general socio-emotional behaviours were also recorded. We applied multiple correspondence analysis and k-means clustering to map relationships between hedonic domains and extract core factors defining aberrant hedonic phenotypes. Neuroanatomical associations were assessed using voxel-based morphometry of brain MRI images across the combined patient cohort. Altered (increased and/or decreased) reward responsiveness was exhibited by most patients in the behavioural and semantic variants of frontotemporal dementia and around two-thirds of patients in other dementia groups, significantly (P < 0.05) more frequently than in healthy controls. While food-directed changes were most prevalent across the patient cohort, behavioural changes directed toward non-primary rewards occurred significantly more frequently (P < 0.05) in the behavioural and semantic variants of frontotemporal dementia than in other patient groups. Hedonic behavioural changes across the patient cohort were underpinned by two principal factors: a 'gating' factor determining the emergence of altered reward behaviour and a 'modulatory' factor determining how that behaviour is directed. These factors were expressed jointly in a set of four core, trans-diagnostic and multimodal hedonic phenotypes: 'reward-seeking', 'reward-restricted', 'eating-predominant' and 'control-like'-variably represented across the cohort and associated with more pervasive socio-emotional behavioural abnormalities. The principal gating factor was associated (P < 0.05 after correction for multiple voxel-wise comparisons over the whole brain) with a common profile of grey matter atrophy in anterior cingulate, bilateral temporal poles, right middle frontal and fusiform gyri: the cortical circuitry that mediates behavioural salience and semantic and affective appraisal of sensory stimuli. Our findings define a multi-domain phenotypic architecture for aberrant reward behaviours in major dementias, with novel implications for the neurobiological understanding and clinical management of these diseases.

5.
BMJ Open ; 12(11): e064576, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36428012

RESUMO

OBJECTIVES: We explored whether adapting neuropsychological tests for online administration during the COVID-19 pandemic was feasible for dementia research. DESIGN: We used a longitudinal design for healthy controls, who completed face-to-face assessments 3-4 years before remote assessments. For patients, we used a cross-sectional design, contrasting a prospective remote cohort with a retrospective face-to-face cohort matched for age/education/severity. SETTING: Remote assessments were conducted using video-conferencing/online testing platforms, with participants using a personal computer/tablet at home. Face-to-face assessments were conducted in testing rooms at our research centre. PARTICIPANTS: The remote cohort comprised 25 patients (n=8 Alzheimer's disease (AD); n=3 behavioural variant frontotemporal dementia (bvFTD); n=4 semantic dementia (SD); n=5 progressive non-fluent aphasia (PNFA); n=5 logopenic aphasia (LPA)). The face-to-face patient cohort comprised 64 patients (n=25 AD; n=12 bvFTD; n=9 SD; n=12 PNFA; n=6 LPA). Ten controls who previously participated in face-to-face research also took part remotely. OUTCOME MEASURES: The outcome measures comprised the strength of evidence under a Bayesian framework for differences in performances between testing environments on general neuropsychological and neurolinguistic measures. RESULTS: There was substantial evidence suggesting no difference across environments in both the healthy control and combined patient cohorts (including measures of working memory, single-word comprehension, arithmetic and naming; Bayes Factors (BF)01 >3), in the healthy control group alone (including measures of letter/category fluency, semantic knowledge and bisyllabic word repetition; all BF01 >3), and in the combined patient cohort alone (including measures of working memory, episodic memory, short-term verbal memory, visual perception, non-word reading, sentence comprehension and bisyllabic/trisyllabic word repetition; all BF01 >3). In the control cohort alone, there was substantial evidence in support of a difference across environments for tests of visual perception (BF01=0.0404) and monosyllabic word repetition (BF01=0.0487). CONCLUSIONS: Our findings suggest that remote delivery of neuropsychological tests for dementia research is feasible.


Assuntos
Doença de Alzheimer , Afasia , COVID-19 , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Teorema de Bayes , Estudos Transversais , Estudos Retrospectivos , Pandemias , Estudos Prospectivos , COVID-19/diagnóstico , Testes Neuropsicológicos
6.
Brain Commun ; 4(3): fcac118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611314

RESUMO

Phonemic restoration-perceiving speech sounds that are actually missing-is a fundamental perceptual process that 'repairs' interrupted spoken messages during noisy everyday listening. As a dynamic, integrative process, phonemic restoration is potentially affected by neurodegenerative pathologies, but this has not been clarified. Here, we studied this phenomenon in 5 patients with typical Alzheimer's disease and 4 patients with semantic dementia, relative to 22 age-matched healthy controls. Participants heard isolated sounds, spoken real words and pseudowords in which noise bursts either overlaid a consonant or replaced it; a tendency to hear replaced (missing) speech sounds as present signified phonemic restoration. All groups perceived isolated noises normally and showed phonemic restoration of real words, most marked in Alzheimer's patients. For pseudowords, healthy controls showed no phonemic restoration, while Alzheimer's patients showed marked suppression of phonemic restoration and patients with semantic dementia contrastingly showed phonemic restoration comparable to real words. Our findings provide the first evidence that phonemic restoration is preserved or even enhanced in neurodegenerative diseases, with distinct syndromic profiles that may reflect the relative integrity of bottom-up phonological representation and top-down lexical disambiguation mechanisms in different diseases. This work has theoretical implications for predictive coding models of language and neurodegenerative disease and for understanding cognitive 'repair' processes in dementia. Future research should expand on these preliminary observations with larger cohorts.

7.
Brain Commun ; 3(3): fcab173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423301

RESUMO

Making predictions about the world and responding appropriately to unexpected events are essential functions of the healthy brain. In neurodegenerative disorders, such as frontotemporal dementia and Alzheimer's disease, impaired processing of 'surprise' may underpin a diverse array of symptoms, particularly abnormalities of social and emotional behaviour, but is challenging to characterize. Here, we addressed this issue using a novel paradigm: music. We studied 62 patients (24 female; aged 53-88) representing major syndromes of frontotemporal dementia (behavioural variant, semantic variant primary progressive aphasia, non-fluent-agrammatic variant primary progressive aphasia) and typical amnestic Alzheimer's disease, in relation to 33 healthy controls (18 female; aged 54-78). Participants heard famous melodies containing no deviants or one of three types of deviant note-acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). Using a regression model that took elementary perceptual, executive and musical competence into account, we assessed accuracy detecting melodic deviants and simultaneously recorded pupillary responses and related these to deviant surprise value (information-content) and carrier melody predictability (entropy), calculated using an unsupervised machine learning model of music. Neuroanatomical associations of deviant detection accuracy and coupling of detection to deviant surprise value were assessed using voxel-based morphometry of patients' brain MRI. Whereas Alzheimer's disease was associated with normal deviant detection accuracy, behavioural and semantic variant frontotemporal dementia syndromes were associated with strikingly similar profiles of impaired syntactic and semantic deviant detection accuracy and impaired behavioural and autonomic sensitivity to deviant information-content (all P < 0.05). On the other hand, non-fluent-agrammatic primary progressive aphasia was associated with generalized impairment of deviant discriminability (P < 0.05) due to excessive false-alarms, despite retained behavioural and autonomic sensitivity to deviant information-content and melody predictability. Across the patient cohort, grey matter correlates of acoustic deviant detection accuracy were identified in precuneus, mid and mesial temporal regions; correlates of syntactic deviant detection accuracy and information-content processing, in inferior frontal and anterior temporal cortices, putamen and nucleus accumbens; and a common correlate of musical salience coding in supplementary motor area (all P < 0.05, corrected for multiple comparisons in pre-specified regions of interest). Our findings suggest that major dementias have distinct profiles of sensory 'surprise' processing, as instantiated in music. Music may be a useful and informative paradigm for probing the predictive decoding of complex sensory environments in neurodegenerative proteinopathies, with implications for understanding and measuring the core pathophysiology of these diseases.

8.
Cortex ; 142: 186-203, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273798

RESUMO

Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer's disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients' brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer's disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers ('numerophilia') in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p < .05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease.


Assuntos
Demência Frontotemporal , Riso , Doenças Neurodegenerativas , Afasia Primária Progressiva não Fluente , Emoções , Demência Frontotemporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
9.
Brain Sci ; 11(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804653

RESUMO

The speech we hear every day is typically "degraded" by competing sounds and the idiosyncratic vocal characteristics of individual speakers. While the comprehension of "degraded" speech is normally automatic, it depends on dynamic and adaptive processing across distributed neural networks. This presents the brain with an immense computational challenge, making degraded speech processing vulnerable to a range of brain disorders. Therefore, it is likely to be a sensitive marker of neural circuit dysfunction and an index of retained neural plasticity. Considering experimental methods for studying degraded speech and factors that affect its processing in healthy individuals, we review the evidence for altered degraded speech processing in major neurodegenerative diseases, traumatic brain injury and stroke. We develop a predictive coding framework for understanding deficits of degraded speech processing in these disorders, focussing on the "language-led dementias"-the primary progressive aphasias. We conclude by considering prospects for using degraded speech as a probe of language network pathophysiology, a diagnostic tool and a target for therapeutic intervention.

10.
Sci Rep ; 10(1): 16321, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004840

RESUMO

The selective destruction of large-scale brain networks by pathogenic protein spread is a ubiquitous theme in neurodegenerative disease. Characterising the circuit architecture of these diseases could illuminate both their pathophysiology and the computational architecture of the cognitive processes they target. However, this is challenging using standard neuroimaging techniques. Here we addressed this issue using a novel technique-spectral dynamic causal modelling-that estimates the effective connectivity between brain regions from resting-state fMRI data. We studied patients with semantic dementia-the paradigmatic disorder of the brain system mediating world knowledge-relative to healthy older individuals. We assessed how the effective connectivity of the semantic appraisal network targeted by this disease was modulated by pathogenic protein deposition and by two key phenotypic factors, semantic impairment and behavioural disinhibition. The presence of pathogenic protein in SD weakened the normal inhibitory self-coupling of network hubs in both antero-mesial temporal lobes, with development of an abnormal excitatory fronto-temporal projection in the left cerebral hemisphere. Semantic impairment and social disinhibition were linked to a similar but more extensive profile of abnormally attenuated inhibitory self-coupling within temporal lobe regions and excitatory projections between temporal and inferior frontal regions. Our findings demonstrate that population-level dynamic causal modelling can disclose a core pathophysiological feature of proteinopathic network architecture-attenuation of inhibitory connectivity-and the key elements of distributed neuronal processing that underwrite semantic memory.


Assuntos
Demência Frontotemporal/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Idoso , Feminino , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/fisiopatologia , Testes Neuropsicológicos
11.
Ann Clin Transl Neurol ; 7(7): 1252-1257, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558373

RESUMO

Logopenic variant primary progressive aphasia (lvPPA) is the least well defined of the major primary progressive aphasia (PPA) syndromes. We assessed phoneme discrimination in patients with PPA (semantic, nonfluent/agrammatic, and logopenic variants) and typical Alzheimer's disease, relative to healthy age-matched participants. The lvPPA group performed significantly worse than all other groups apart from tAD, after adjusting for auditory verbal working memory. In the combined PPA cohort, voxel-based morphometry correlated phonemic discrimination score with grey matter in left angular gyrus. Our findings suggest that impaired phonemic discrimination may help differentiate lvPPA from other PPA subtypes, with important diagnostic and management implications.


Assuntos
Doença de Alzheimer/fisiopatologia , Afasia Primária Progressiva/diagnóstico , Afasia Primária Progressiva/fisiopatologia , Idoso , Doença de Alzheimer/patologia , Afasia Primária Progressiva/classificação , Afasia Primária Progressiva/patologia , Diagnóstico Diferencial , Feminino , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia , Psicolinguística
12.
Front Neurol ; 11: 291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373055

RESUMO

Our awareness of time, specifically of longer intervals spanning hours, days, months, and years, is critical for ensuring our sense of self-continuity. Disrupted time awareness over such intervals is a clinical feature in a number of frontotemporal dementia syndromes and Alzheimer's disease, but has not been studied and compared systematically in these diseases. We used a semi-structured caregiver survey to capture time-related behavioral alterations in 71 patients representing all major sporadic and genetic syndromes of frontotemporal dementia, in comparison to 28 patients with typical Alzheimer's disease and nine with logopenic aphasia, and 32 healthy older individuals. Survey items pertained to apparent difficulties ordering past personal events or estimating time intervals between events, temporal rigidity and clockwatching, and propensity to relive past events. We used a logistic regression model including diagnosis, age, gender, and disease severity as regressors to compare the proportions of individuals exhibiting each temporal awareness symptom between diagnostic groups. Gray matter associations of altered time awareness were assessed using voxel-based morphometry. All patient groups were significantly more prone to exhibit temporal awareness symptoms than healthy older individuals. Clinical syndromic signatures were identified. While patients with typical and logopenic Alzheimer's disease most frequently exhibited disturbed event ordering or interval estimation, patients with semantic dementia were most prone to temporal rigidity and clockwatching and those with behavioral variant frontotemporal dementia commonly exhibited all these temporal symptoms as well as a propensity to relive past events. On voxel-based morphometry, the tendency to relive past events was associated with relative preservation of a distributed left-sided temporo-parietal gray matter network including hippocampus. These findings reveal a rich and complex picture of disturbed temporal awareness in major dementia syndromes, with stratification of frontotemporal dementia syndromes from Alzheimer's disease. This is the first study to assess symptoms of altered temporal awareness across frontotemporal dementia syndromes and provides a motivation for future work directed to the development of validated clinical questionnaires, analysis of underlying neurobiological mechanisms and design of interventions.

13.
J Neurosci ; 39(39): 7703-7714, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31391262

RESUMO

Despite the prevalent use of alerting sounds in alarms and human-machine interface systems and the long-hypothesized role of the auditory system as the brain's "early warning system," we have only a rudimentary understanding of what determines auditory salience-the automatic attraction of attention by sound-and which brain mechanisms underlie this process. A major roadblock has been the lack of a robust, objective means of quantifying sound-driven attentional capture. Here we demonstrate that: (1) a reliable salience scale can be obtained from crowd-sourcing (N = 911), (2) acoustic roughness appears to be a driving feature behind this scaling, consistent with previous reports implicating roughness in the perceptual distinctiveness of sounds, and (3) crowd-sourced auditory salience correlates with objective autonomic measures. Specifically, we show that a salience ranking obtained from online raters correlated robustly with the superior colliculus-mediated ocular freezing response, microsaccadic inhibition (MSI), measured in naive, passively listening human participants (of either sex). More salient sounds evoked earlier and larger MSI, consistent with a faster orienting response. These results are consistent with the hypothesis that MSI reflects a general reorienting response that is evoked by potentially behaviorally important events regardless of their modality.SIGNIFICANCE STATEMENT Microsaccades are small, rapid, fixational eye movements that are measurable with sensitive eye-tracking equipment. We reveal a novel, robust link between microsaccade dynamics and the subjective salience of brief sounds (salience rankings obtained from a large number of participants in an online experiment): Within 300 ms of sound onset, the eyes of naive, passively listening participants demonstrate different microsaccade patterns as a function of the sound's crowd-sourced salience. These results position the superior colliculus (hypothesized to underlie microsaccade generation) as an important brain area to investigate in the context of a putative multimodal salience hub. They also demonstrate an objective means for quantifying auditory salience.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Movimentos Sacádicos/fisiologia , Colículos Superiores/fisiologia , Estimulação Acústica , Adolescente , Adulto , Crowdsourcing , Feminino , Humanos , Masculino , Adulto Jovem
14.
Semin Neurol ; 39(2): 251-263, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30925617

RESUMO

Frontotemporal dementias are a clinically, neuroanatomically, and pathologically diverse group of diseases that collectively constitute an important cause of young-onset dementia. Clinically, frontotemporal dementias characteristically strike capacities that define us as individuals, presenting broadly as disorders of social behavior or language. Neurobiologically, these diseases can be regarded as "molecular nexopathies," a paradigm for selective targeting and destruction of brain networks by pathogenic proteins. Mutations in three major genes collectively account for a substantial proportion of behavioral presentations, with far-reaching implications for the lives of families but also potential opportunities for presymptomatic diagnosis and intervention. Predicting molecular pathology from clinical and radiological phenotypes remains challenging; however, certain patterns have been identified, and genetically mediated forms of frontotemporal dementia have spearheaded this enterprise. Here we present a clinical roadmap for diagnosis and assessment of the frontotemporal dementias, motivated by our emerging understanding of the mechanisms by which pathogenic protein effects at the cellular level translate to abnormal neural network physiology and ultimately, complex clinical symptoms. We conclude by outlining principles of management and prospects for disease modification.


Assuntos
Demência Frontotemporal/diagnóstico , Afasia Primária Progressiva não Fluente/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Humanos , Afasia Primária Progressiva não Fluente/genética , Afasia Primária Progressiva não Fluente/terapia
15.
JAMA Neurol ; 76(5): 607-611, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742208

RESUMO

Importance: Despite being characterized as a disorder of language production, nonfluent/agrammatic variant primary progressive aphasia (nfvPPA) is frequently associated with auditory symptoms. However, to our knowledge, peripheral auditory function has not been defined in this condition. Objective: To assess peripheral hearing function in individuals with nfvPPA compared with healthy older individuals and patients with Alzheimer disease (AD). Design, Setting, and Participants: This cross-sectional single-center study was conducted at the Dementia Research Centre of University College London between August 2015 and July 2018. A consecutive cohort of patients with nfvPPA and patients with AD were compared with healthy control participants. No participant had substantial otological or cerebrovascular disease; all eligible patients fulfilling diagnostic criteria and able to comply with audiometry were included. Main Outcomes and Measures: We measured mean threshold sound levels required to detect pure tones at frequencies of 500, 1000, 2000, 4000, and 6000 Hz in the left and right ears separately; these were used to generate better-ear mean and worse-ear mean composite hearing threshold scores and interaural difference scores for each participant. All analyses were adjusted for participant age. Results: We studied 19 patients with nfvPPA (9 female; mean [SD] age, 70.3 [9.0] years), 20 patients with AD (9 female; mean [SD] age, 69.4 [8.1] years) and 34 control participants (15 female; mean [SD] age, 66.7 [6.3] years). The patients with nfvPPA had significantly higher scores than control participants on better-ear mean scores (patients with nfvPPA: mean [SD], 36.3 [9.4] decibels [dB]; control participants: 28.9 [7.3] dB; age-adjusted difference, 5.7 [95% CI, 1.4-10.0] dB; P = .01) and worse-ear mean scores (patients with nfvPPA: 42.2 [11.5] dB; control participants: 31.7 [8.1] dB; age-adjusted difference, 8.5 [95% CI, 3.6-13.4] dB; P = .001). The patients with nfvPPA also had significantly higher better-ear mean scores than patients with AD (patients with AD: mean [SD] 31.1 [7.5] dB; age-adjusted difference, 4.8 [95% CI, 0.0-9.6] dB; P = .048) and worse-ear mean scores (patients with AD: mean [SD], 33.8 [8.2] dB; age-adjusted difference, 7.8 [95% CI, 2.4-13.2] dB; P = .005). The difference scores (worse-ear mean minus better-ear mean) were significantly higher in the patients with nfvPPA (mean [SD], 5.9 [5.2] dB) than control participants (mean [SD], 2.8 [2.2] dB; age-adjusted difference, 2.8 [95% CI, 0.9-4.7] dB; P = .004) and patients with AD (mean [SD], 2.8 [2.1] dB; age-adjusted difference, 3.0 [95% CI, 0.9-5.1] dB; P = .005). Conclusions and Relevance: In this study, patients with nfvPPA performed worse on pure-tone audiometry than healthy older individuals or patients with AD, and the difference was not attributable to age or general disease factors. Cases of nfvPPA were additionally associated with increased functional interaural audiometric asymmetry. These findings suggest conjoint peripheral afferent and more central regulatory auditory dysfunction in individuals with nfvPPA.


Assuntos
Vias Auditivas/fisiopatologia , Perda Auditiva/fisiopatologia , Afasia Primária Progressiva não Fluente/fisiopatologia , Idoso , Doença de Alzheimer/fisiopatologia , Audiometria de Tons Puros , Estudos de Casos e Controles , Estudos Transversais , Feminino , Perda Auditiva/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Afasia Primária Progressiva não Fluente/complicações
16.
Front Neurosci ; 12: 815, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524219

RESUMO

The functional neuroanatomical mechanisms underpinning cognition in the normal older brain remain poorly defined, but have important implications for understanding the neurobiology of aging and the impact of neurodegenerative diseases. Auditory processing is an attractive model system for addressing these issues. Here, we used fMRI of melody processing to investigate auditory pattern processing in normal older individuals. We manipulated the temporal (rhythmic) structure and familiarity of melodies in a passive listening, 'sparse' fMRI protocol. A distributed cortico-subcortical network was activated by auditory stimulation compared with silence; and within this network, we identified separable signatures of anisochrony processing in bilateral posterior superior temporal lobes; melodic familiarity in bilateral anterior temporal and inferior frontal cortices; and melodic novelty in bilateral temporal and left parietal cortices. Left planum temporale emerged as a 'hub' region functionally partitioned for processing different melody dimensions. Activation of Heschl's gyrus by auditory stimulation correlated with the integrity of underlying cortical tissue architecture, measured using multi-parameter mapping. Our findings delineate neural substrates for analyzing perceptual and semantic properties of melodies in normal aging. Melody (auditory pattern) processing may be a useful candidate paradigm for assessing cerebral networks in the older brain and potentially, in neurodegenerative diseases of later life.

17.
Intern Med J ; 48(8): 1010, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30133983

Assuntos
Mioglobinúria , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...