Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol Rep ; 11: 100514, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32835182

RESUMO

Today, the development of innovative methods for production of organic compounds from natural resources is essential topic for many research groups in the worldwide. Levulinic acid is a platform for many important organic processes in the synthesis of natural products, pharmaceuticals, plasticizers, drugs and various other additives. In addition, 1,4-pentanediol which is a product of reduction of levulinic acid, is a valuable raw material in the chemical industry. Here, we report a highly efficient method for the production of levulinic acid from Chlorella ohadi algae using hydrothermal hydrolysis process by using HCl. Our methodology shows that the levulinic acid can be obtained in almost 90% molar yield compared to the glucose in Chlorella ohadi. Finally, we describe a one step reaction for the completely conversion of levulinic acid into 1,4-pentadiol in water using S. cerevisiae yeast as a catalyst.

2.
J Mater Chem B ; 2(36): 6020-6029, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261854

RESUMO

Efficient RNA delivery to targeted cells requires the use of stable interactive carriers that provide RNA protection during the extracellular transit and trigger release once internalised. One strategy to avoid the premature extracellular RNA drain coupled to sufficient intracellular release is the use of stimuli-responsive delivery materials exploiting as a triggering mechanism the redox gradient between the extra- and intracellular compartments. This work describes a facile route for the preparation of redox-active nanocarriers containing disulphides that combine RNA protection and delivery on demand based on intracellular glutathione (GSH) levels. A one-step sonochemical technology was employed to generate thiolated chitosan (TC) nanocapsules with a diameter between 250 and 570 nm and simultaneously load them with RNA. Their size and physiological stability were directly proportional to the extent of disulphide cross-linking, which in turn could be ruled by adjusting the processing pH and degree of chitosan thiolation. TC processing into nanocapsules showed to be advantageous in terms of RNA condensation and protection compared to the typically employed nanocomplexation. Fluorescence microscopy imaging revealed that: (i) the nanocapsules enter the human fibroblasts and migrate to the perinuclear regions within 1 h, and (ii) the cargo release may occur after the internalisation. These redox-responsive and biocompatible drug carriers demonstrated an effective (∼60%) and sustained (up to 72 h) RNA release at intracellular GSH concentrations (10 mM) in vitro, based on disulphide reduction and consequent capsule disassembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA