Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 101(4): 1656-1664, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38654892

RESUMO

The two-week protein biochemistry experience described herein focuses on reinforcing key biochemical concepts and achieving significant learning domain accomplishments for students (Content Knowledge, Logical Mathematical Reasoning, Visualization, Information Literacy, and Knowledge Integration) and valuable teaching opportunities for instructors. The experience encompasses an exploration of the transport protein serum transferrin as an important regulator of Fe(III) biochemistry and incorporates techniques to assess protein-metal stoichiometry and protein stability and to perform molecular visualization. Students gain practical experience in utilizing spectrophotometric analysis for constructing stoichiometric curves, in performing urea-PAGE, and in applying the PyMOL program to evaluate metal coordination at a protein binding site and the associated protein structural change. The learning and teaching accomplishments provide valuable skills that can be extended into research and translated to other teaching formats.

2.
JACS Au ; 1(6): 865-878, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34240081

RESUMO

Efforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox)2. Whole-cell EPR studies reveal that the compounds can effectively attenuate RNR activity though seemingly causing different changes to the labile iron pool that may account for differences in their potency against cells. Studies of Ti(IV) interactions with the adenosine nucleotide family at pH 7.4 reveal strong metal binding and extensive phosphate hydrolysis, which suggest the capacity of the metal to disturb the nucleotide substrate pool of the RNR enzyme. By decreasing intracellular Fe bioavailability and altering the nucleotide substrate pool, the Ti cTfm compounds could inhibit the activity of the R1 and R2 subunits of RNR. The compounds arrest the cell cycle in the S phase, indicating suppressed DNA replication, and induce apoptotic cell death. Cotreatment cell viability studies with cisplatin and Ti(Deferasirox)2 reveal a promising synergism between the compounds that is likely owed to their distinct but complementary effect on DNA replication.

3.
Inorganics (Basel) ; 9(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35978717

RESUMO

The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.

4.
J Chem Educ ; 97(7): 1970-1975, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36819740

RESUMO

Coordination chemistry is a major component of the undergraduate inorganic chemistry curriculum and yet the presentation of the material can be cumbersome due to the limitations of the course typically being taught in one semester. Also, because of the large scope of this branch of chemistry encompassing all of the elements, the course design has not been standardized. These factors result in some important coordination chemistry themes being given insufficient development. Herein we propose a novel activity to formally introduce metal complex aqueous speciation in a holistic active-learning manner that includes a lecture component and hands-on experience. This topic has real world relevance and contextualizes many important coordination concepts. It would extend student comprehension about the intricate factors that affect metal complexation in an aqueous solution environment by focusing on the influence of pH. The activity explores the pH dependent speciation of the well-characterized interaction between Fe(III) and 2,3-dihydroxynapthalene-6-sulfonate and reveals the colorful changes in species throughout the pH range of 0 to 13. Students learn how to generate speciation plots and to understand the ultraviolet-visible (UV-Vis) electronic absorption spectroscopy of transition metal compounds to be able to analyze the source of color that they observe. Assessment of the activity was conducted with 24 students who completed a Likert scale survey and responded to open-ended questions. The activity was then applied in actual course settings in which student comprehension was quantitatively evaluated. The activity can be easily adapted to students of different stages of academic development from elementary to college students.

5.
Inorganics (Basel) ; 8(9)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36844373

RESUMO

Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33912613

RESUMO

A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.

7.
Inorg Chem ; 56(14): 7788-7802, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28644630

RESUMO

The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox)2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox)2]2-, exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox)2]2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion mechanism of these compounds and show their ability to induce early and late apoptosis.


Assuntos
Antineoplásicos/farmacologia , Benzoatos/farmacologia , Complexos de Coordenação/farmacologia , Quelantes de Ferro/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzoatos/síntese química , Benzoatos/química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Deferasirox , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Ferro/química , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Ligantes , Modelos Químicos , Estrutura Molecular , Albumina Sérica/química , Titânio/química , Transferrina/química , Triazóis/síntese química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...