Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 26(2): 301-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35570547

RESUMO

BACKGROUND & AIM: Significant evidence indicates that endocrine disrupted bisphenol A (BPA) seriously endangers human health. In males, BPA affects testis architecture and sperm quality, and ultimately reduces fertility. This study explored the therapeutic potential of Nigella sativa (NS) seed extract on testis and sperm abnormalities in BPA-exposed mice and characterized the underlying mechanism. METHODS: Forty male Swiss albino mice (5.5 weeks old, N = 8 per group) were randomly divided into five groups: Group I, normal control, Group II, vehicle control (sterile corn oil); Group III, NS-exposed (oral 200 mg/kg); Group IV, BPA-exposed (oral 400 µg/kg body weight); Group V, BPA + NS-exposed mice. Animals were treated for 6 weeks and sacrificed for biochemical and histological examination. RESULTS: The results indicated that BPA exposure results in significant testis and sperm abnormalities. Specifically, BPA promoted a marked reduction in the body and testis compared with the control group. Histopathological findings showed that BPA caused a widespread degeneration of spermatogenic cells of the seminiferous epithelium, decreased sperm counts and motility, and augmented sperm abnormalities, and whereas little alteration to sperm DNA was observed. In addition, BPA increased the levels of the lipid peroxidation marker, malondialdehyde (MDA), and reduced the levels of the antioxidant marker, reducing glutathione (GSH). Treatment with NS oil extract during BPA exposure significantly alleviated testis and sperm abnormalities, reduced MDA levels, and enhanced GSH levels. CONCLUSION: The results demonstrate that NS oil protects mice against BPA-induced sperm and testis abnormalities, likely by suppressing levels of the oxidative stress marker, MDA, and enhancing the levels of the antioxidant marker, GSH.


Assuntos
Antioxidantes , Testículo , Humanos , Masculino , Camundongos , Animais , Testículo/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia , Oxirredução , Glutationa/metabolismo
2.
Open Vet J ; 12(1): 23-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342727

RESUMO

Background: During early life, exposure to environmental toxicants, including endocrine disruptor bisphenol A (BPA), can be detrimental to the immune system. To our knowledge, a few researches have looked at the effects of developing BPA exposures on the spleen. Aim: The murine model was developed to investigate the underlying molecular mechanisms and mode of BPA actions on the spleen subsequent to prolonged early-life exposure to BPA. Methods: Immature (3-week-old) male and female Swiss Albino mice were intraperitoneally injected with 50 µg/kg BPA in corn oil or corn oil alone for 6 weeks. Mouse spleens were harvested and examined histologically at 10 weeks old (adulthood). Results: We observed neurobehavioral impairments and a significant increase in peripheral monocyte and lymphocyte counts in mice (males and females). Moreover, several spleen abnormalities in both male and female mice were observed in adulthood. BPA-treated mice's histopathological results revealed toxicity in the form of significantly active germinal centers of the white pulp and a few apoptotic cells. There was also a notable invasion of the red pulp by eosinophils and lymphocytes that were significantly higher than normal. Agarose gel electrophoresis provided further evidence of internucleosomal DNA fragmentation and apoptosis in the splenic tissues of BPA-treated mice compared to controls. In addition, there were increased levels of the lipid peroxidation malondialdehyde end-product, a marker of oxidative lipid damage, in the spleens of BPA-treated mice compared to controls. Conclusion: Our study provides evidence that oxidative stress injury induced by early-life exposures to BPA could contribute to a range of splenic tissue damages during adulthood.


Assuntos
Óleo de Milho , Baço , Animais , Compostos Benzidrílicos/toxicidade , Óleo de Milho/farmacologia , Feminino , Masculino , Camundongos , Estresse Oxidativo , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA