Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-504551

RESUMO

Despite being largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and long-lasting phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster infection model to characterize the effects of SARS-CoV-2 versus Influenza A virus (IAV) infection on the sensory nervous system. Efforts to detect the presence of virus in the cervical/thoracic spinal cord and dorsal root ganglia (DRGs) demonstrated detectable levels of SARS-CoV-2 by quantitative PCR and RNAscope uniquely within the first 24 hours of infection. SARS-CoV-2-infected hamsters demonstrated mechanical hypersensitivity during acute infection; intriguingly, this hypersensitivity was milder, but prolonged when compared to IAV-infected hamsters. RNA sequencing (RNA-seq) of thoracic DRGs from acute infection revealed predominantly neuron-biased signaling perturbations in SARS-CoV-2-infected animals as opposed to type I interferon signaling in tissue derived from IAV-infected animals. RNA-seq of 31dpi thoracic DRGs from SARS-CoV-2-infected animals highlighted a uniquely neuropathic transcriptomic landscape, which was consistent with substantial SARS-CoV-2-specific mechanical hypersensitivity at 28dpi. Ontology analysis of 1, 4, and 30dpi RNA-seq revealed novel targets for pain management, such as ILF3. Meta-analysis of all SARS-CoV-2 RNA-seq timepoints against preclinical pain model datasets highlighted both conserved and unique pro-nociceptive gene expression changes following infection. Overall, this work elucidates novel transcriptomic signatures triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities while also highlighting several therapeutic targets for alleviation of infection-induced hypersensitivity. One Sentence SummarySARS-CoV-2 infection results in an interferon-associated transcriptional response in sensory tissues underlying time-dependent hypersensitivity.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-476786

RESUMO

SARS-CoV-2 has been found capable of inducing prolonged pathologies collectively referred to as Long-COVID. To better understand this biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. While SARS-CoV-2 exceeded IAV in its capacity to cause injury to the lung and kidney, the most significant changes were observed in the olfactory bulb (OB) and olfactory epithelium (OE) where inflammation was visible beyond one month post SARS-CoV-2 infection. Despite a lack of detectable virus, OB/OE demonstrated microglial and T cell activation, proinflammatory cytokine production, and interferon responses that correlated with behavioral changes. These findings could be corroborated through sequencing of individuals who recovered from COVID-19, as sustained inflammation in OB/OE tissue remained evident months beyond disease resolution. These data highlight a molecular mechanism for persistent COVID-19 symptomology and characterize a small animal model to develop future therapeutics.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-300574

RESUMO

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant inter-individual variability. In addition to showing more disease in males, the elderly, and individuals with underlying co-morbidities, SARS-CoV-2 can seemingly render healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants also impact vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR-engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single nucleotide polymorphism (rs4702), common in the population at large, and located in the 3UTR of the protease FURIN, impacts alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can impact viral infection, and thus contribute to clinical heterogeneity in SARS-CoV-2. Ongoing genetic studies will help to better identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs that might treat disease.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20183947

RESUMO

Background and aimsImmune dysregulation caused by SARS-CoV-2 infection is thought to play a pathogenic role in COVID-19. SARS-CoV-2 can infect a variety of host cells, including intestinal epithelial cells. We sought to characterize the role of the gastrointestinal immune system in the pathogenesis of the inflammatory response associated with COVID-19. MethodsWe measured cytokines, inflammatory markers, viral RNA, microbiome composition and antibody responses in stool and serum samples from a prospectively enrolled cohort of 44 hospitalized COVID-19 patients. ResultsSARS-CoV-2 RNA was detected in stool of 41% of patients and was found more frequently in patients with diarrhea than those without (16[44%] vs 5[19%], p=0.06). Patients who survived had lower median viral genome copies than those who did not (p=0.021). Compared to uninfected controls, COVID-19 patients had higher median fecal levels of IL-8 (166.5 vs 286.5 pg/mg; p=0.05) and lower levels of fecal IL-10 (678 vs 194 pg/mg; p<0.001) compared to uninfected controls. Stool IL-23 was higher in patients with more severe COVID-19 disease (223.8 vs 86.6 pg/mg; p=0.03) and we find evidence of intestinal virus-specific IgA responses, which was associated with more severe disease. Fecal cytokines and calprotectin levels were not correlated with gastrointestinal symptoms or with the level of virus detected. ConclusionsAlthough SARS-CoV-2 RNA was detectable in the stools of COVID-19 patients and select individuals had evidence for a specific mucosal IgA response, intestinal inflammation was limited, even in patients presenting with gastrointestinal symptoms.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-151357

RESUMO

A novel isolate of the SARS-CoV-2 virus carrying a point mutation in the Spike protein (D614G) has recently emerged and rapidly surpassed others in prevalence. This mutation is in linkage disequilibrium with an ORF1b protein variant (P314L), making it difficult to discern the functional significance of the Spike D614G mutation from population genetics alone. Here, we perform site-directed mutagenesis to introduce the D614G variant and show that in multiple cell lines, including human lung epithelial cells, that the D614G mutation is up to 8-fold more effective at transducing cells than wild-type. We demonstrate increased infection using both Spike-pseudotyped lentivirus and intact SARS-CoV-2 virus. Although there is minimal difference in ACE2 receptor binding between the Spike variants, we show that the G614 variant is more resistant to proteolytic cleavage in vitro and in human cells, suggesting a possible mechanism for the increased transduction. This result has important implications for the efficacy of Spike-based vaccines currently under development in protecting against this recent and highly-prevalent SARS-CoV-2 isolate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA