Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Physiol ; 14: 4, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24946879

RESUMO

BACKGROUND: Dysregulation of the autonomic nervous system is frequent in subjects with cardiovascular disease. The contribution of different forms of renovascular hypertension and the mechanisms contributing to autonomic dysfunction in hypertension are incompletely understood. Here, murine models of renovascular hypertension with preserved (2-kidneys-1 clip, 2K1C) and reduced (1-kidney-1 clip, 1K1C) kidney mass were studied with regard to autonomic nervous system regulation (sympathetic tone: power-spectral analysis of systolic blood pressure; parasympathetic tone: power-spectral analysis of heart rate) and baroreflex sensitivity of heart rate by spontaneous, concomitant changes of systolic blood pressure and pulse interval. Involvement of the renin-angiotensin system and the rho-kinase pathway were determined by application of inhibitors. RESULTS: C57BL6N mice (6 to 11) with reduced kidney mass (1K1C) or with preserved kidney mass (2K1C) developed a similar degree of hypertension. In comparison to control mice, both models presented with a significantly increased sympathetic tone and lower baroreflex sensitivity of heart rate. However, only 2K1C animals had a lower parasympathetic tone, whereas urinary norepinephrine excretion was reduced in the 1K1C model. Rho kinase inhibition given to a subset of 1K1C and 2K1C animals improved baroreflex sensitivity of heart rate selectively in the 1K1C model. Rho kinase inhibition had no additional effects on autonomic nervous system in either model of renovascular hypertension and did not change the blood pressure. Blockade of AT1 receptors (in 2K1C animals) normalized the sympathetic tone, decreased resting heart rate, improved baroreflex sensitivity of heart rate and parasympathetic tone. CONCLUSIONS: Regardless of residual renal mass, blood pressure and sympathetic tone are increased, whereas baroreflex sensitivity is depressed in murine models of renovascular hypertension. Reduced norepinephrine excretion and/or degradation might contribute to sympathoactivation in renovascular hypertension with reduced renal mass (1K1C). Overall, the study helps to direct research to optimize medical therapy of hypertension.


Assuntos
Barorreflexo/fisiologia , Hipertensão Renovascular/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Hipertensão Renovascular/enzimologia , Hipertensão Renovascular/urina , Isoquinolinas/farmacologia , Rim/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Parassimpático/fisiopatologia , Piperidinas/farmacologia
2.
J Clin Invest ; 123(11): 4731-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24216508

RESUMO

ROS are implicated in bone diseases. NADPH oxidase 4 (NOX4), a constitutively active enzymatic source of ROS, may contribute to the development of such disorders. Therefore, we studied the role of NOX4 in bone homeostasis. Nox4(-/-) mice displayed higher bone density and reduced numbers and markers of osteoclasts. Ex vivo, differentiation of monocytes into osteoclasts with RANKL and M-CSF induced Nox4 expression. Loss of NOX4 activity attenuated osteoclastogenesis, which was accompanied by impaired activation of RANKL-induced NFATc1 and c-JUN. In an in vivo model of murine ovariectomy­induced osteoporosis, pharmacological inhibition or acute genetic knockdown of Nox4 mitigated loss of trabecular bone. Human bone obtained from patients with increased osteoclast activity exhibited increased NOX4 expression. Moreover, a SNP of NOX4 was associated with elevated circulating markers of bone turnover and reduced bone density in women. Thus, NOX4 is involved in bone loss and represents a potential therapeutic target for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea/fisiopatologia , NADPH Oxidases/fisiologia , Osteoclastos/fisiologia , Animais , Densidade Óssea/genética , Densidade Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Fator Estimulador de Colônias de Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/patologia , Monócitos/fisiologia , NADPH Oxidase 4 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Osteoclastos/patologia , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Osteoporose Pós-Menopausa/fisiopatologia , Polimorfismo de Nucleotídeo Único , Ligante RANK/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Hypertension ; 62(1): 140-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670301

RESUMO

Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.


Assuntos
Endotélio Vascular/fisiopatologia , Regulação da Expressão Gênica , Monoaminoxidase/genética , Estresse Oxidativo/genética , RNA Mensageiro/genética , Doenças Vasculares/genética , Vasodilatação/fisiologia , Angiotensina II/farmacologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Western Blotting , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Humanos , Imuno-Histoquímica , Camundongos , Monoaminoxidase/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Veias Umbilicais/enzimologia , Veias Umbilicais/patologia , Veias Umbilicais/fisiopatologia , Doenças Vasculares/enzimologia , Doenças Vasculares/fisiopatologia , Vasodilatação/efeitos dos fármacos
4.
Arterioscler Thromb Vasc Biol ; 32(7): 1605-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580898

RESUMO

OBJECTIVE: Obesity is associated with hyperleptinemia but it is not clear whether leptin protects vascular function or promotes dysfunction. We therefore studied the consequences of hyperleptinemia in lean mice. METHODS AND RESULTS: Wild-type and endothelial NO synthase (eNOS)(-/-) mice were infused with leptin (0.4 mg/kg per day, 7 days), and endothelium-dependent relaxation was studied in aortic segments. Leptin had no effect on acetylcholine-induced endothelium-dependent relaxation in normal wild-type mice but restored endothelium-dependent relaxation in wild-type mice treated with angiotensin II (0.7 mg/kg per day, 7 days) to induce endothelial dysfunction. Leptin also sensitized aortae from eNOS(-/-) mice to acetylcholine, an effect blocked by neuronal NOS (nNOS) inhibition and not observed in eNOS-nNOS double(-/-) mice. Consistent with these findings, leptin induced nNOS expression in murine and human vessels and human endothelial but not smooth muscle cells. Aortic nNOS expression was also induced in mice by a high-fat diet. Mechanistically, leptin increased endothelial Janus kinase 2 and signal transducer and activator of transcription 3 phosphorylation, and inhibition of Janus kinase 2 prevented nNOS induction in cultured cells and leptin-induced relaxations in eNOS(-/-) mice. CONCLUSIONS: Leptin induces endothelial nNOS expression, which compensates, in part, for a lack of NO production by eNOS to maintain endothelium-dependent relaxation.


Assuntos
Endotélio Vascular/fisiologia , Leptina/farmacologia , Óxido Nítrico Sintase Tipo III/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Aorta/enzimologia , Humanos , Janus Quinase 2/fisiologia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais
5.
Circ Res ; 110(9): 1217-25, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22456182

RESUMO

RATIONALE: The function of Nox4, a source of vascular H(2)O(2), is unknown. Other Nox proteins were identified as mediators of endothelial dysfunction. OBJECTIVE: We determined the function of Nox4 in situations of increased stress induced by ischemia or angiotensin II with global and tamoxifen-inducible Nox4(-/-) mice. METHODS AND RESULTS: Nox4 was highly expressed in the endothelium and contributed to H(2)O(2) formation. Nox4(-/-) mice exhibited attenuated angiogenesis (femoral artery ligation) and PEG-catalase treatment in control mice had a similar effect. Tube formation in cultured Nox4(-/-) lung endothelial cells (LECs) was attenuated and restored by low concentrations of H(2)O(2,) whereas PEG-catalase attenuated tube formation in control LECs. Angiotensin II infusion was used as a model of oxidative stress. Compared to wild-type, aortas from inducible Nox4-deficient animals had development of increased inflammation, media hypertrophy, and endothelial dysfunction. Mechanistically, loss of Nox4 resulted in reduction of endothelial nitric oxide synthase expression, nitric oxide production, and heme oxygenase-1 (HO-1) expression, which was associated with apoptosis and inflammatory activation. HO-1 expression is controlled by Nrf-2. Accordingly, Nox4-deficient LECs exhibited reduced Nrf-2 protein level and deletion of Nox4 reduced Nrf-2 reporter gene activity. In vivo treatment with hemin, an inducer of HO-1, blocked the vascular hypertrophy induced by Nox4 deletion in the angiotensin II infusion model and carbon monoxide, the product of HO-1, blocked the Nox4-deletion-induced apoptosis in LECs. CONCLUSION: Endogenous Nox4 protects the vasculature during ischemic or inflammatory stress. Different from Nox1 and Nox2, this particular NADPH oxidase therefore may have a protective vascular function.


Assuntos
Células Endoteliais/enzimologia , Peróxido de Hidrogênio/metabolismo , Hipertensão/enzimologia , Isquemia/enzimologia , Pulmão/irrigação sanguínea , Músculo Esquelético/irrigação sanguínea , NADPH Oxidases/metabolismo , Estresse Oxidativo , Angiotensina II , Animais , Antioxidantes/farmacologia , Apoptose , Boranos/metabolismo , Boranos/farmacologia , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Carbonatos/farmacologia , Catalase/farmacologia , Células Cultivadas , Citoproteção , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertrofia , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADH NADPH Oxirredutases/deficiência , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Fator 2 Relacionado a NF-E2/genética , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/farmacologia , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA