Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 28(2): 260-271, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132264

RESUMO

Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Perna (Membro) , Paralisia/reabilitação , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/reabilitação , Caminhada/fisiologia
2.
Bioelectromagnetics ; 36(2): 149-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25639237

RESUMO

A previous study found that incident magnetic field exposure from pulsed magnetic field therapy (PMFT) mats can exceed ICNIRP 1998 reference levels. Due to the popularity of PMFT mats for private therapeutic use, regulators need to know if the products are compliant with the basic restrictions and how overexposure can be determined. This case study's objective was to test if such products are intrinsically compliant with ICNIRP 1998 and ICNIRP 2010 basic restrictions by evaluating three different commercially-available PMFT products. In the first step, experimentally validated numerical models of these mats were developed. As a second step, the induced fields were evaluated in high-resolution anatomical models of the IT'IS Virtual Population for various lying positions and compared to the safety guidelines. As expected, a strong influence of exposure on the PMFT design, anatomy, lying position and body orientation was found. The maximum exposure of one PMFT exceeds 3.1 times the basic restrictions of ICNIRP 1998 for the central nervous system tissues and 1.36 times the limit of ICNIRP 2010 for the peripheral tissues. Body loops can significantly increase the electric fields close to the skin, e.g., when the hand and thigh are in contact during mat use. In conclusion, PMFT products are not intrinsically compliant with ICNIRP 1998 and ICNIRP 2010 basic restrictions and therefore require special considerations.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/análise , Magnetoterapia/instrumentação , Adulto , Criança , Exposição Ambiental/normas , Feminino , Fidelidade a Diretrizes , Guias como Assunto , Humanos , Magnetoterapia/efeitos adversos , Exposição Materna , Modelos Anatômicos , Modelos Teóricos , Postura , Gravidez , Reprodutibilidade dos Testes , Suíça
3.
Bioelectromagnetics ; 34(5): 375-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23404214

RESUMO

Compliance with the established exposure limits for the electric field (E-field) induced in the human brain due to low-frequency magnetic field (B-field) induction is demonstrated by numerical dosimetry. The objective of this study is to investigate the dependency of dosimetric compliance assessments on the applied methodology and segmentations. The dependency of the discretization uncertainty (i.e., staircasing and field singularity) on the spatially averaged peak E-field values is first determined using canonical and anatomical models. Because spatial averaging with a grid size of 0.5 mm or smaller sufficiently reduces the impact of artifacts regardless of tissue size, it is a superior approach to other proposed methods such as the 99th percentile or smearing of conductivity contrast. Through a canonical model, it is demonstrated that under the same uniform B-field exposure condition, the peak spatially averaged E-fields in a heterogeneous model can be significantly underestimated by a homogeneous model. The frequency scaling technique is found to introduce substantial error if the relative change in tissue conductivity is significant in the investigated frequency range. Lastly, the peak induced E-fields in the brain tissues of five high-resolution anatomically realistic models exposed to a uniform B-field at ICNIRP and IEEE reference levels in the frequency range of 10 Hz to 100 kHz show that the reference levels are not always compliant with the basic restrictions. Based on the results of this study, a revision is recommended for the guidelines/standards to achieve technically sound exposure limits that can be applied without ambiguity.


Assuntos
Encéfalo/efeitos da radiação , Campos Eletromagnéticos , Exposição Ambiental , Campos Magnéticos , Adolescente , Adulto , Estatura , Peso Corporal , Pré-Escolar , Condutividade Elétrica , Feminino , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Modelos Anatômicos , Modelos Biológicos , Obesidade/fisiopatologia , Doses de Radiação , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...