Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 232: 106335, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245694

RESUMO

Phosphate (P) is an essential element involved in various biological actions, such as bone integrity, energy production, cell signaling and molecular component. P homeostasis is modulated by 4 main tissues; intestine, kidney, bone, and parathyroid gland, where 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), parathyroid hormone and fibroblast growth factor 23 (FGF23) are produced and/or have an influence. In bone, serum P level modulates the production of FGF23 which then controls not only P excretion but also vitamin D metabolism in kidney in an endocrine manner. The hormonally active form of vitamin D, 1,25(OH)2D3, also has a significant effect on skeletal cells via its receptor, the vitamin D receptor, to control gene expression which mediates bone metabolism as well as mineral homeostasis. In this study, we adopted RNA-seq analysis to understand genome-wide skeletal gene expression regulation in response to P and 1,25(OH)2D3. We examined lumbar 5 vertebrae from the mice that were fed P deficient diet for a week followed by an acute high P diet for 3, 6, and 24 h as well as mice treated with 1,25(OH)2D3 intraperitoneally for 6 h. Further identification and exploration of the genes regulated by P and 1,25(OH)2D3 showed that P dynamically modulates the expression of skeletal genes involved in various biological processes while 1,25(OH)2D3 regulates genes highly related to bone metabolism. Our in vivo data were then compared with in vitro data that we previously obtained, which suggests that the gene expression profiles presented in this report mainly represent those of osteocytes. Interestingly, it was found that even though the skeletal response to P is distinguished from that to 1,25(OH)2D3, both factors have an effect on Wnt signaling pathway to modulate bone homeostasis. Taken together, this report presents genome-wide data that provide a foundation to understand molecular mechanisms by which skeletal cells respond to P and 1,25(OH)2D3.


Assuntos
Calcitriol , Fosfatos , Camundongos , Animais , Calcitriol/farmacologia , Calcitriol/metabolismo , Transcriptoma , Estudo de Associação Genômica Ampla , Vitamina D/farmacologia , Vitamina D/metabolismo , 24,25-Di-Hidroxivitamina D 3 , Cálcio/metabolismo
2.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862513

RESUMO

The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Camundongos , Humanos , Animais , Vitamina D/metabolismo , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Cálcio/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Homeostase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
J Biol Chem ; 298(11): 102559, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183832

RESUMO

Vitamin D metabolism centers on kidney regulation of Cyp27b1 by mineralotropic hormones, including induction by parathyroid hormone (PTH), suppression by fibroblast growth factor 23 (FGF23) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and reciprocal regulations for Cyp24a1. This coordinated genomic regulation results in production of endocrine 1,25(OH)2D3, which, together with PTH and FGF23, controls mineral homeostasis. However, how these events are coordinated is unclear. Here, using in vivo chromatin immunoprecipitation sequencing in mouse kidney, we demonstrate that PTH activation rapidly induces increased recruitment of phosphorylated (p-133) CREB (pCREB) and its coactivators, CBP (CREB-binding protein) and CRTC2 (CREB-regulated transcription coactivator 2), to previously defined kidney-specific M1 and M21 enhancers near the Cyp27b1 gene. At distal enhancers of the Cyp24a1 gene, PTH suppression dismisses CBP with only minor changes in pCREB and CRTC2 occupancy, all of which correlate with decreased genomic activity and reduced transcripts. Treatment of mice with salt-inducible kinase inhibitors (YKL-05-099 and SK-124) yields rapid genomic recruitment of CRTC2 to Cyp27b1, limited interaction of CBP, and a transcriptional response for both Cyp27b1 and Cyp24a1 that mirrors the actions of PTH. Surprisingly, we find that 1,25(OH)2D3 suppression increases the occupancy of CRTC2 in the M1 enhancer, a novel observation for CRTC2 and 1,25(OH)2D3 action. Suppressive actions of 1,25(OH)2D3 and FGF23 at the Cyp27b1 gene are associated with reduced CBP recruitment at these CREB-module enhancers that disrupts full PTH induction. Our findings show that CRTC2 contributes to transcription of both Cyp27b1 and Cyp24a1, demonstrate salt-inducible kinase inhibition as a key modulator of vitamin D metabolism, and provide molecular insight into the coordinated mechanistic actions of PTH, FGF23, and 1,25(OH)2D3 in the kidney that regulate mineral homeostasis.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase , Calcitriol , Camundongos , Animais , Vitamina D3 24-Hidroxilase/genética , Calcitriol/metabolismo , Vitamina D/metabolismo , Hormônio Paratireóideo/metabolismo , Rim/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Genômica , Receptores de Calcitriol/metabolismo
4.
PLoS One ; 16(5): e0250974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970941

RESUMO

The cytokine RANKL is essential for osteoclast formation during physiological and pathological bone resorption. RANKL also contributes to lymphocyte production, development of lymph nodes and mammary glands, as well as other biological activities. Transcriptional control of the Tnfsf11 gene, which encodes RANKL, is complex and involves distant regulatory regions. Nevertheless, cell culture studies suggest that an enhancer region near the transcription start site is involved in the control of Tnfsf11 expression by hormones such as 1,25-(OH)2 vitamin D3 and parathyroid hormone, as well as the sympathetic nervous system. To address the significance of this region in vivo, we deleted the sequence between -510 to -1413 bp, relative to Tnfsf11 exon 1, from mice using CRISPR-based gene editing. MicroCT analysis of the femur and fourth lumbar vertebra of enhancer knockout mice showed no differences in bone mass compared to wild type littermates at 5 weeks and 6 months of age, suggesting no changes in osteoclast formation. RNA extracted from the tibia, fifth lumbar vertebra, thymus, and spleen at 6 months of age also showed no reduction in Tnfsf11 mRNA abundance between these groups. However, maximal stimulation of Tnfsf11 mRNA abundance in cultured stromal cells by PTH was reduced approximately 40% by enhancer deletion, while stimulation by 1,25-(OH)2 vitamin D3 was unaffected. The abundance of B and T lymphocytes in the bone marrow did not differ between genotypes. These results demonstrate that the region between -510 and -1413 does not contribute to Tnfsf11 expression, osteoclast support, or lymphocyte production in mice under normal physiological conditions but may be involved in situations of elevated parathyroid hormone.


Assuntos
Densidade Óssea/fisiologia , Osteoclastos/fisiologia , Ligante RANK/genética , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Feminino , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Osteoclastos/citologia , Hormônio Paratireóideo/metabolismo , Regiões Promotoras Genéticas , Ligante RANK/metabolismo , Sequências Reguladoras de Ácido Nucleico
5.
JBMR Plus ; 5(1): e10433, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553989

RESUMO

Our recent genomic studies identified a complex kidney-specific enhancer module located within the introns of adjacent Mettl1 (M1) and Mettl21b (M21) genes that mediate basal and PTH induction of Cyp27b1, as well as suppression by FGF23 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The tissue specificity for this regulatory module appears to be localized exclusively to renal proximal tubules. Gross deletion of these segments in mice has severe consequences on skeletal health, and directly affects Cyp27b1 expression in the kidney. Deletion of both the M1 and M21 submodules together almost completely eliminates basal Cyp27b1 expression in the kidney, creating a renal specific pseudo-null mouse, resulting in a systemic and skeletal phenotype similar to that of the Cyp27b1-KO mouse caused by high levels of both 25-hydroxyvitamin D3 [25(OH)D3] and PTH and depletion of 1,25(OH)2D3. Cyp24a1 levels in the double KO mouse also decrease because of compensatory downregulation of the gene by elevated PTH and reduced FGF23 that is mediated by an intergenic module located downstream of the Cyp24a1 gene. Outside of the kidney in nonrenal target cells (NRTCs), expression of Cyp27b1 in these mutant mice was unaffected. Dietary normalization of calcium, phosphate, PTH, and FGF23 rescues the aberrant phenotype of this mouse and normalizes the skeleton. In addition, both the high levels of 25(OH)D3 were reduced and the low levels of 1,25(OH)2D3 were fully eliminated in these mutant mice as a result of the rescue-induced normalization of renal Cyp24a1. Thus, these hormone-regulated enhancers for both Cyp27b1 and Cyp24a1 in the kidney are responsible for the circulating levels of 1,25(OH)2D3 in the blood. The retention of Cyp27b1 and Cyp24a1 expression in NRTCs of these endocrine 1,25(OH)2D3-deficient mice suggests that this Cyp27b1 pseudo-null mouse will provide a model for the future exploration of the role of NRTC-produced 1,25(OH)2D3 in the hormone's diverse noncalcemic actions in both health and disease. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Endocrinology ; 160(12): 2877-2891, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599948

RESUMO

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone involved in the control of phosphate (P) homeostasis and vitamin D metabolism. Despite advances, however, molecular details of this gene's regulation remain uncertain. In this report, we created mouse strains in which four epigenetically marked FGF23 regulatory regions were individually deleted from the mouse genome using CRISPR/Cas9 gene-editing technology, and the consequences of these mutations were then assessed on Fgf23 expression and regulation in vivo. An initial analysis confirmed that bone expression of Fgf23 and circulating intact FGF23 (iFGF23) were strongly influenced by both chronic dietary P treatment and acute injection of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. However, further analysis revealed that bone Fgf23 expression and iFGF23 could be rapidly upregulated by dietary P within 3 and 6 hours, respectively; this acute upregulation was lost in the FGF23-PKO mouse containing an Fgf23 proximal enhancer deletion but not in the additional enhancer-deleted mice. Of note, prolonged dietary P treatment over several days led to normalization of FGF23 levels in the FGF23-PKO mouse, suggesting added complexity associated with P regulation of FGF23. Treatment with 1,25(OH)2D3 also revealed a similar loss of Fgf23 induction and blood iFGF23 levels in this mouse. Finally, normal lipopolysaccharide (LPS) induction of Fgf23 expression was also compromised in the FGF23-PKO mouse, a result that, together with our previous report, indicates that the action of LPS on Fgf23 expression is mediated by both proximal and distal Fgf23 enhancers. These in vivo data provide key functional insight into the genomic enhancers through which Fgf23 expression is mediated.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Animais , Osso e Ossos/metabolismo , Sistemas CRISPR-Cas , Calcitriol , Elementos Facilitadores Genéticos , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatos/sangue , Regiões Promotoras Genéticas
7.
J Biol Chem ; 294(39): 14467-14481, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31439663

RESUMO

Cytochrome P450 family 27 subfamily B member 1 (CYP27B1) and CYP24A1 function to maintain physiological levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the kidney. Renal Cyp27b1 and Cyp24a1 expression levels are transcriptionally regulated in a highly reciprocal manner by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and 1,25(OH)2D3 In contrast, Cyp24a1 regulation in nonrenal target cells (NRTCs) is limited to induction by 1,25(OH)2D3 Herein, we used ChIP-Seq analyses of mouse tissues to identify regulatory regions within the Cyp24a1 gene locus. We found an extended region downstream of Cyp24a1 containing a cluster of sites, termed C24-DS1, binding PTH-sensitive cAMP-responsive element-binding protein (CREB) and a cluster termed C24-DS2 binding the vitamin D receptor (VDR). VDR-occupied sites were present in both the kidney and NRTCs, but pCREB sites were occupied only in the kidney. We deleted each segment in the mouse and observed that although the overt phenotypes of both cluster deletions were unremarkable, RNA analysis in the C24-DS1-deleted strain revealed a loss of basal renal Cyp24a1 expression, total resistance to FGF23 and PTH regulation, and secondary suppression of renal Cyp27b1; 1,25(OH)2D3 induction remained unaffected in all tissues. In contrast, loss of the VDR cluster in the C24-DS2-deleted strain did not affect 1,25(OH)2D3 induction of renal Cyp24a1 expression yet reduced but did not eliminate Cyp24a1 responses in NRTCs. We conclude that a chromatin-based mechanism differentially regulates Cyp24a1 in the kidney and NRTCs and is essential for the specific functions of Cyp24a1 in these two tissue types.


Assuntos
Cromatina/metabolismo , Rim/metabolismo , Elementos de Resposta , Vitamina D3 24-Hidroxilase/genética , Animais , Calcitriol/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo
8.
J Biol Chem ; 294(24): 9518-9535, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31053643

RESUMO

Vitamin D3 is terminally bioactivated in the kidney to 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) via cytochrome P450 family 27 subfamily B member 1 (CYP27B1), whose gene is regulated by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and 1,25(OH)2D3 Our recent genomic studies in the mouse have revealed a complex kidney-specific enhancer module within the introns of adjacent methyltransferase-like 1 (Mettl1) and Mettl21b that mediate basal and PTH-induced expression of Cyp27b1 and FGF23- and 1,25(OH)2D3-mediated repression. Gross deletion of these segments in mice has severe effects on Cyp27b1 regulation and skeletal phenotype but does not affect Cyp27b1 expression in nonrenal target cells (NRTCs). Here, we report a bimodal activity in the Mettl1 intronic enhancer with components responsible for PTH-mediated Cyp27b1 induction and 1,25(OH)2D3-mediated repression and additional activities, including FGF23 repression, within the Mettl21b enhancers. Deletion of both submodules eliminated basal Cyp27b1 expression and regulation in the kidney, leading to systemic and skeletal phenotypes similar to those of Cyp27b1-null mice. However, basal expression and lipopolysaccharide-induced regulation of Cyp27b1 in NRTCs was unperturbed. Importantly, dietary normalization of calcium, phosphate, PTH, and FGF23 rescued the skeletal phenotype of this mutant mouse, creating an ideal in vivo model to study nonrenal 1,25(OH)2D3 production in health and disease. Finally, we confirmed a conserved chromatin landscape in human kidney that is similar to that in mouse. These findings define a finely balanced homeostatic mechanism involving PTH and FGF23 together with protection from 1,25(OH)2D3 toxicity that is responsible for both adaptive vitamin D metabolism and mineral regulation.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/fisiologia , Cálcio/metabolismo , Elementos Facilitadores Genéticos , Deleção de Genes , Homeostase , Rim/metabolismo , Vitamina D/análogos & derivados , Animais , Sistemas CRISPR-Cas , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Rim/efeitos dos fármacos , Masculino , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vitamina D/farmacologia
9.
Mol Cell Biol ; 39(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455249

RESUMO

Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.


Assuntos
DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Estrogênios/metabolismo , Feminino , Humanos , Células MCF-7 , Fosforilação , Ligação Proteica , Transdução de Sinais
10.
JBMR Plus ; 2(1): 32-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29527594

RESUMO

Fibroblast growth factor 23 (FGF23) production is regulated by both calciotropic hormones and inflammation. Consistent with this, elevated FGF23 levels are associated with inflammatory markers as well as parathyroid hormone (PTH) in various disease states, including chronic kidney disease (CKD). However, the molecular mechanisms underpinning Fgf23 transcription in response to these regulators are largely unknown. We therefore utilized chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) data from an osteocyte cell line to identify potential regulatory regions of the Fgf23 gene. Based on ChIP-seq analysis of enhancer-associated histone modifications, including H3K4 methylation and H3K9 acetylation, we discovered several potential enhancers for Fgf23, one of which was located 16kb upstream of the gene's transcriptional start site. Deletion of this putative enhancer from the mouse genome using CRISPR-Cas9 technology led to lower bone, thymus, and spleen expression of Fgf23 mRNA without altering circulating levels of the intact hormone, although as previously reported, only bone displayed significant basal expression. Nevertheless, lack of the -16kb enhancer blunted FGF23 upregulation in a tissue-specific manner by the acute inflammatory inducers lipopolysaccharide (LPS), interleukin-1-beta (IL-1ß), and tumor necrosis factor-alpha (TNFα) in bone, non-osseous tissues, and in circulation. Lack of the -16kb enhancer also inhibited PTH-induced bone Fgf23 mRNA. Moreover, the absence of this Fgf23 enhancer in an oxalate diet-induced murine CKD model prevented the early onset induction of osseous, renal, and thymic Fgf23 mRNA levels and led to a significant blunting of elevated circulating intact FGF23 levels. These results suggest that -16kb enhancer mediates the induction of Fgf23 by inflammation and PTH and facilitates the increase in FGF23 expression in a murine model of CKD. As exemplified herein, these Fgf23 enhancer-deleted mice will provide a unique model in which to study the role of FGF23 expression in inflammatory diseases.

11.
J Steroid Biochem Mol Biol ; 177: 36-45, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28602960

RESUMO

The vitamin D receptor (VDR) mediates the pleiotropic biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). These actions include orchestration of mineral homeostasis which is coordinated by the kidney, intestine, bone and parathyroid gland wherein the VDR transcriptionally regulates expression of the genes involved in this complex process. Mutations in human VDR (hVDR) cause hereditary vitamin D resistant rickets, a genetic syndrome characterized by hypocalcemia, hyperparathyroidism and rickets resulting from dysregulation of mineral homeostasis. Expression of the VDR is regulated by external stimuli in a tissue-specific manner. However, the mechanisms of this tissue-specificity remain unclear. Studies also suggest that phosphorylation of hVDR at serine 208 impacts the receptor's transcriptional activity. These experiments were conducted in vitro, however, and therefore limited in their conclusions. In this report, we summarize (1) our most recently updated ChIP-seq data from mouse tissues to identify regulatory regions responsible for the tissues-specific regulation of the VDR and (2) our studies to understand the mechanism of hormonal regulation of Vdr expression in bone and kidney in vivo using transgenic mouse strains generated by mouse mini-genes that contain comprehensive genetic information capable of recapitulating endogenous Vdr gene regulation and expression. We also defined the functional human VDR gene locus in vivo by using a human mini-gene comparable to that in the mouse to generate a humanized VDR mouse strain in which the receptor is expressed at normal levels (normal expressor). The present report also shows that a humanized mouse model in which the VDR is expressed at levels about 10-fold lower than the normal expressor mouse rescued the VDR-null phenotype despite its reduced transcriptional activity relative to wildtype expression. We also generated an additional humanized mouse model expressing hVDR bearing a mutation converting serine 208 to alanine (hVDR-S208A). In spite of the mutation, target gene expression induced by the ligand was unchanged relative to a mouse strain expressing comparable levels of wildtype hVDR. Further characterization also showed that serum calcium and parathyroid hormone levels were normal and alopecia was not observed in this hVDR-S208A mouse strain as well. Taken together, our in vivo studies using ChIP-seq analyses and the mini-gene transgenic mice improve our understanding of the tissue-specific regulatory mechanisms of controlling VDR expression and the mechanisms of action of the VDR.


Assuntos
Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Osso e Ossos/metabolismo , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Intestinos/fisiologia , Rim/metabolismo , Masculino , Camundongos Transgênicos
12.
J Biol Chem ; 292(42): 17541-17558, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28808057

RESUMO

The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/biossíntese , Calcitriol/metabolismo , Colecalciferol/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Rim/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Calcitriol/genética , Colecalciferol/genética , Fator de Crescimento de Fibroblastos 23 , Deleção de Genes , Camundongos , Especificidade de Órgãos/fisiologia , Vitamina D3 24-Hidroxilase/biossíntese , Vitamina D3 24-Hidroxilase/genética
13.
J Clin Invest ; 127(4): 1146-1154, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28240603

RESUMO

The vitamin D receptor (VDR) is the single known regulatory mediator of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in higher vertebrates. It acts in the nucleus of vitamin D target cells to regulate the expression of genes whose products control diverse, cell type-specific biological functions that include mineral homeostasis. In this Review we describe progress that has been made in defining new cellular sites of action of this receptor, the mechanisms through which this mediator controls the expression of genes, the biology that ensues, and the translational impact of this receptor on human health and disease. We conclude with a brief discussion of what comes next in understanding vitamin D biology and the mechanisms that underlie its actions.


Assuntos
Calcitriol , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Receptores de Calcitriol , Pesquisa Translacional Biomédica/métodos , Animais , Calcitriol/genética , Calcitriol/metabolismo , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
14.
J Biol Chem ; 291(34): 17829-47, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27402842

RESUMO

Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPARγ are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBPß, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPARγ, retinoid X receptor, C/EBPα, and C/EBPß binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies.


Assuntos
Adipogenia/fisiologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Epigênese Genética/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Feminino , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo
15.
Vitam Horm ; 100: 21-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26827947

RESUMO

Insight into mechanisms that link the actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to the regulation of gene expression has evolved extensively since the initial discovery of a nuclear protein known as the vitamin D receptor (VDR). Perhaps most important was the molecular cloning of this receptor which enabled its inclusion within the nuclear receptor gene family and further studies of both its structure and regulatory function. Current studies are now refocused on the vitamin D hormone's action at the genome, where VDR together with other transcription factors coordinates the recruitment of chromatin active coregulatory complexes that participate directly in the modification of gene output. These studies highlight the role of chromatin in the expression of genes and the dynamic impact of the epigenetic landscape that contextualizes individual gene loci thus influencing the VDR's transcriptional actions. In this chapter, we summarize advances made over the past few years in understanding vitamin D action on a genome-wide scale, focusing on overarching principles that have emerged at this level. Of particular significance is the finding that dynamic changes that occur to the genome during cellular differentiation at both genetic and epigenetic levels profoundly alter the ability of 1,25(OH)2D3 and its receptor to regulate gene expression. We address the broad impact of differentiation on specific epigenetic histone modifications that occur across the genome and the ability of the VDR to influence this activity at selected gene loci as well. These studies advance our understanding of not only vitamin D action but also of the complex and dynamic role played by the genome itself as a major determinant of VDR activity.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Calcitriol/metabolismo , Genômica , Humanos , Osteoblastos/fisiologia , Vitamina D/metabolismo
16.
J Steroid Biochem Mol Biol ; 164: 258-264, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26348136

RESUMO

Matrix metalloproteinase 13 (MMP13, collagenase-3) is a vital component for chondrocyte and osteoblast maturation, and is aberrantly expressed in numerous disease states. At the transcriptional level, Mmp13 is controlled by many different growth factors and hormones. Most notably, Mmp13 is regulated by the vitamin D hormone (1,25(OH)2D3), parathyroid hormone (PTH), and several cytokines. These activities occur through participation by the transcription factors VDR, RUNX2, FOS, JUN, and Osterix (OSX), respectively. Recently, we discovered that Mmp13 is regulated by elements quite distal to the transcriptional start site -10, -20, and -30kb upstream. These enhancers, along with minor contributions from the region proximal to the promoter, are responsible for the ligand inducible and, most strikingly, the basal activities of Mmp13 gene regulation. Here, we found that the actions of PTH and OSX do not occur through the -10kb VDR bound enhancer. Rather, the -30kb RUNX2 bound enhancer and the promoter proximal regions were essential for activity. Through RUNX2 deletion and OSX overexpression in cells, we showed a specific role for OSX in Mmp13 regulation. Finally, we created an in vivo CRISPR deleted -10kb enhancer mouse model. Despite normal bone density and growth, they fail to up-regulate Mmp13 in response to 1,25(OH)2D3. These data are consistent with those obtained through UAMS osteoblast cell culture and further define the specific roles of distal enhancers in the regulation of Mmp13.


Assuntos
Calcitriol/farmacologia , Elementos Facilitadores Genéticos , Metaloproteinase 13 da Matriz/genética , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fatores de Transcrição/genética , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Edição de Genes , Regulação da Expressão Gênica , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Fator de Transcrição Sp7 , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
J Biol Chem ; 290(51): 30573-86, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26504088

RESUMO

The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), whose expression in bone cells is regulated positively by 1,25(OH)2D3, retinoic acid, and parathyroid hormone through both intergenic and intronic enhancers. In this report, we used ChIP-sequencing analysis to confirm the presence of these Vdr gene enhancers in mesenchyme-derived bone cells and to describe the epigenetic histone landscape that spans the Vdr locus. Using bacterial artificial chromosome-minigene stable cell lines, CRISPR/Cas9 enhancer-deleted daughter cell lines, transient transfection/mutagenesis analyses, and transgenic mice, we confirmed the functionality of these bone cell enhancers in vivo as well as in vitro. We also identified VDR-binding sites across the Vdr gene locus in kidney and intestine using ChIP-sequencing analysis, revealing that only one of the bone cell-type enhancers bound VDR in kidney tissue, and none were occupied by the VDR in the intestine, consistent with weak or absent regulation by the 1,25(OH)2D3 hormone in these tissues, respectively. However, a number of additional sites of VDR binding unique to either kidney or intestine were present further upstream of the Vdr gene, suggesting the potential for alternative regulatory loci. Importantly, virtually all of these regions retained histone signatures consistent with those of enhancers and exhibited unique DNase I hypersensitivity profiles that reflected the potential for chromatin access. These studies define mechanisms associated with hormonal regulation of the Vdr and hint at the differential nature of VDR binding activity at the Vdr gene in different primary target tissues in vivo.


Assuntos
Calcitriol/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica/fisiologia , Hormônios/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Calcitriol/genética , Linhagem Celular , Hormônios/genética , Camundongos , Camundongos Transgênicos , Receptores de Calcitriol/genética
18.
J Biol Chem ; 290(29): 18199-18215, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26041780

RESUMO

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitaminas/farmacologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Feminino , Deleção de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vitamina D/farmacologia
19.
Bone ; 81: 757-764, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25819039

RESUMO

Genomic annotation of unique and combinatorial epigenetic modifications along with transcription factor occupancy is having a profound impact on our understanding of the genome. These studies have led to a better appreciation of the dynamic nature of the epigenetic and transcription factor binding components that reveal overarching principles of the genome as well as tissue specificity. In this minireview, we discuss the presence and potential functions of several of these features across the genome in osteoblast lineage cells. We examine how these features are modulated during cellular maturation, affect transcriptional output and phenotype, and how they alter the ability of cells to respond to systemic signals directed by calcemic hormones such as 1,25-dihydroxyvitamin D3 and PTH. In particular, we describe recent experiments which indicate that progressive stages of bone cell differentiation affect RUNX2 binding to the genome, modify and restrict patterns of gene expression, and dramatically alter cellular response to the vitamin D hormone. These studies expand our understanding of mechanisms that govern steroid hormone regulation of gene expression, while highlighting the increasing complexity that is evident relative to these basic cellular processes. The results also have profound implications with respect to the impact of skeletal diseases on transcriptional outcomes as well. This article is part of a Special Issue entitled Epigenetics and Bone.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/metabolismo , Epigênese Genética , Código das Histonas/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Calcitriol/farmacologia , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Receptores de Calcitriol/metabolismo
20.
J Biol Chem ; 290(17): 11093-107, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25773540

RESUMO

Matrix metalloproteinase 13 (Mmp13, collagenase-3) plays an essential role in bone metabolism and mineral homeostasis. It is regulated by numerous factors, including BMP-2, parathyroid hormone, and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), through transcription factors such as Runt-related transcription factor 2 (RUNX2), CCAAT/enhancer-binding protein ß (C/EBPß), OSX, and vitamin D receptor (VDR). During osteoblast maturation, the basal expression of Mmp13 and its sensitivity to 1,25(OH)2D3 are strikingly increased. In this report, ChIP-sequencing analysis in mouse preosteoblasts revealed that the Mmp13 gene was probably regulated by three major enhancers located -10, -20, and -30 kb upstream of the gene promoter, occupied by activated VDR and prebound C/EBPß and RUNX2, respectively. Initially, bacterial artificial chromosome clone recombineering and traditional mutagenesis defined binding sites for VDR and RUNX2. We then employed a CRISPR/Cas9 gene editing approach to delete the -10 and -30 kb Mmp13 enhancers, a region proximal to the promoter, and VDR or RUNX2. VDR-mediated up-regulation of Mmp13 transcription was completely abrogated upon removal of the -10 kb enhancer, resulting in a 1,25(OH)2D3-directed repression of Mmp13. Deletion of either the -30 kb enhancer or RUNX2 resulted in a complete loss of basal transcript activity and a ChIP-identified destabilization of the chromatin enhancer environment and factor binding. Whereas enhancer deletions only affected Mmp13 expression, the RUNX2 deletion led to changes in gene expression, a reduction in cellular proliferation, and an inability to differentiate. We conclude that the Mmp13 gene is regulated via at least three specific distal enhancers that display independent activities yet are able to integrate response from multiple signaling pathways in a model of activation and suppression.


Assuntos
Sequência de Bases , Regulação Enzimológica da Expressão Gênica/fisiologia , Sequências Repetidas Invertidas/fisiologia , Metaloproteinase 13 da Matriz , Deleção de Sequência , Transcrição Gênica/fisiologia , Animais , Calcitriol/farmacologia , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Elementos Facilitadores Genéticos , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 13 da Matriz/genética , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transdução de Sinais/fisiologia , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...