Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328040

RESUMO

Liver cancer ranks amongst the deadliest cancers. Nerves have emerged as an understudied regulator of tumor progression. The parasympathetic vagus nerve influences systemic immunity via acetylcholine (ACh). Whether cholinergic neuroimmune interactions influence hepatocellular carcinoma (HCC) remains uncertain. Liver denervation via hepatic vagotomy (HV) significantly reduced liver tumor burden, while pharmacological enhancement of parasympathetic tone promoted tumor growth. Cholinergic disruption in Rag1KO mice revealed that cholinergic regulation requires adaptive immunity. Further scRNA-seq and in vitro studies indicated that vagal ACh dampens CD8+ T cell activity via muscarinic ACh receptor (AChR) CHRM3. Depletion of CD8+ T cells abrogated HV outcomes and selective deletion of Chrm3 on CD8 + T cells inhibited liver tumor growth. Beyond tumor-specific outcomes, vagotomy improved cancer-associated fatigue and anxiety-like behavior. As microbiota transplantation from HCC donors was sufficient to impair behavior, we investigated putative microbiota-neuroimmune crosstalk. Tumor, rather than vagotomy, robustly altered fecal bacterial composition, increasing Desulfovibrionales and Clostridial taxa. Strikingly, in tumor-free mice, vagotomy permitted HCC-associated microbiota to activate hepatic CD8+ T cells. These findings reveal that gut bacteria influence behavior and liver anti-tumor immunity via a dynamic and pharmaceutically targetable, vagus-liver axis.

2.
JHEP Rep ; 6(1): 100959, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192537

RESUMO

Backgrounds & Aims: The efficacy of immune checkpoint inhibitor (ICI) therapy for liver cancer remains limited. As the hypoxic liver environment regulates adenosine signaling, we tested the efficacy of adenosine A2a receptor (A2aR) inhibition in combination with ICI treatment in murine models of liver cancer. Methods: RNA expression related to the adenosine pathway was analyzed from public databases. Peripheral blood mononuclear cells of 13 patients with hepatocellular carcinoma (HCC) were examined by flow cytometry. The following murine cell lines were used: SB-1, RIL175, and Hep55.1c (liver cancer), CT26 (colon cancer), and B16-F10 (melanoma). C57BL/6 and BALB/c mice were used for orthotopic tumor models and were treated with SCH58261, an A2aR inhibitor, in combination with anti-PD1 therapy. Results: RNA expression of ADORA2A in tumor tissues derived from patients with HCC was higher than in tissues from other cancer types. A2aR+ T cells in peripheral blood from patients with HCC were highly proliferative after immunotherapy. Likewise, in an orthotopic murine model, A2aR expression on T cells increased following anti-PD1 treatment, and the expression of A2aR on T cells increased more in tumor-bearing mice compared with tumor-free mice. The combination of SCH58261 and anti-PD1 led to activation of T cells and reductions in tumor size in orthotopic liver cancer models. In contrast, SCH58261 monotherapy was ineffective in orthotopic liver cancer models and the combination was ineffective in the subcutaneous tumor models tested. CD4+ T-cell depletion attenuated the efficacy of the combination therapy. Conclusion: A2aR inhibition and anti-PD1 therapy had a synergistic anti-tumor effect in murine liver cancer models. Impact and implications: Adenosine A2a receptor (A2aR)-expressing T cells in the liver increased in tumor-bearing mice and after anti-PD1 treatment. The combination of an A2aR inhibitor and anti-PD1 treatment had potent anti-tumor effects in two murine models of orthotopic liver cancer. Adenosine A2a receptor blockade promotes immunotherapy efficacy in murine models, highlighting putative clinical benefits for advanced stage liver cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA