Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1254691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916190

RESUMO

Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood. NPHP1 and NPHP4 are the major genes which code for proteins that form a complex at the transition zone of the primary cilium, a crucial region required for the maintenance of the ciliary composition integrity. These two proteins also interact with signaling components and proteins associated with the actin cytoskeleton at cell junctions. Due to their specific subcellular localization, we wondered whether NPHP1 and NPHP4 could ensure mechanosensory functions. Using a microfluidic set up, we showed that murine inner medullary collecting ductal cells invalidated for Nphp1 or Nphp4 are more responsive to immediate shear exposure with a fast calcium influx, and upon a prolonged shear condition, an inability to properly regulate cilium length and actin cytoskeleton remodeling. Following a transcriptomic study highlighting shear stress-induced gene expression changes, we showed that prolonged shear triggers both cholesterol biosynthesis pathway and uptake, processes that do not seem to involve neither NPHP1 nor NPHP4. To conclude, our study allowed us to determine a moderate role of NPHP1 and NPHP4 in flow sensation, and to highlight a new signaling pathway induced by shear stress, the cholesterol biosynthesis and uptake pathways, which would allow cells to cope with mechanical stress by strengthening their plasma membrane through the supply of cholesterol.

2.
Sci Data ; 10(1): 361, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280226

RESUMO

While the amount of studies involving single-cell or single-nucleus RNA-sequencing technologies grows exponentially within the biomedical research area, the kidney field requires reference transcriptomic signatures to allocate each cluster its matching cell type. The present meta-analysis of 39 previously published datasets, from 7 independent studies, involving healthy human adult kidney samples, offers a set of 24 distinct consensus kidney cell type signatures. The use of these signatures may help to assure the reliability of cell type identification in future studies involving single-cell and single-nucleus transcriptomics while improving the reproducibility in cell type allocation.


Assuntos
Rim , Transcriptoma , Adulto , Humanos , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Conjuntos de Dados como Assunto
3.
Kidney Int ; 104(2): 245-253, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244473

RESUMO

Nephronophthisis is an autosomal recessive tubulointerstitial nephropathy, belonging to the ciliopathy disorders, characterized by fibrosis and/or cysts. It is the most common genetic cause of kidney failure in children and young adults. Clinically and genetically heterogeneous, it is caused by variants in ciliary genes, resulting in either an isolated kidney disease or syndromic forms in association with other manifestations of ciliopathy disorders. No curative treatment is currently available. Over the past 2 decades, advances in understanding disease mechanisms have identified several dysregulated signaling pathways, some shared with other cystic kidney diseases. Notably, molecules previously developed to target these pathways have shown promising beneficial effects in orthologous mouse models. In addition to these knowledge-based repurposing approaches, unbiased "in cellulo" phenotypic screens of "repurposing" libraries identified small molecules able to rescue the ciliogenesis defects observed in nephronophthisis conditions. Those compounds appeared to act on relevant pathways and, when tested, showed beneficial nephronophthisis-associated kidney and/or extrarenal defects in mice. In this review, we have summarized those studies that highlight the drug repurposing strategies in the context of a rare disorders, such as nephronophthisis-related ciliopathies, with broad genetic heterogeneity and systemic manifestations but with shared disease mechanisms.


Assuntos
Ciliopatias , Doenças Renais Císticas , Doenças Renais Policísticas , Insuficiência Renal , Animais , Camundongos , Rim/patologia , Doenças Renais Policísticas/genética , Doenças Renais Císticas/tratamento farmacológico , Doenças Renais Císticas/genética , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Insuficiência Renal/complicações , Fibrose , Cílios/patologia
4.
Kidney Int ; 104(2): 378-387, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230223

RESUMO

Nephronophthisis (NPH) is an autosomal-recessive ciliopathy representing one of the most frequent causes of kidney failure in childhood characterized by a broad clinical and genetic heterogeneity. Applied to one of the worldwide largest cohorts of patients with NPH, genetic analysis encompassing targeted and whole exome sequencing identified disease-causing variants in 600 patients from 496 families with a detection rate of 71%. Of 788 pathogenic variants, 40 known ciliopathy genes were identified. However, the majority of patients (53%) bore biallelic pathogenic variants in NPHP1. NPH-causing gene alterations affected all ciliary modules defined by structural and/or functional subdomains. Seventy six percent of these patients had progressed to kidney failure, of which 18% had an infantile form (under five years) and harbored variants affecting the Inversin compartment or intraflagellar transport complex A. Forty eight percent of patients showed a juvenile (5-15 years) and 34% a late-onset disease (over 15 years), the latter mostly carrying variants belonging to the Transition Zone module. Furthermore, while more than 85% of patients with an infantile form presented with extra-kidney manifestations, it only concerned half of juvenile and late onset cases. Eye involvement represented a predominant feature, followed by cerebellar hypoplasia and other brain abnormalities, liver and skeletal defects. The phenotypic variability was in a large part associated with mutation types, genes and corresponding ciliary modules with hypomorphic variants in ciliary genes playing a role in early steps of ciliogenesis associated with juvenile-to-late onset NPH forms. Thus, our data confirm a considerable proportion of late-onset NPH suggesting an underdiagnosis in adult chronic kidney disease.


Assuntos
Ciliopatias , Doenças Renais Císticas , Falência Renal Crônica , Doenças Renais Policísticas , Adulto , Humanos , Falência Renal Crônica/diagnóstico , Doenças Renais Policísticas/complicações , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Mutação , Ciliopatias/genética
5.
J Bone Miner Res ; 37(9): 1642-1652, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748595

RESUMO

Skeletal dysplasias comprise a large spectrum of mostly monogenic disorders affecting bone growth, patterning, and homeostasis, and ranging in severity from lethal to mild phenotypes. This study aimed to underpin the genetic cause of skeletal dysplasia in three unrelated families with variable skeletal manifestations. The six affected individuals from three families had severe short stature with extreme shortening of forelimbs, short long-bones, and metatarsals, and brachydactyly (family 1); mild short stature, platyspondyly, and metaphyseal irregularities (family 2); or a prenatally lethal skeletal dysplasia with kidney features suggestive of a ciliopathy (family 3). Genetic studies by whole genome, whole exome, and ciliome panel sequencing identified in all affected individuals biallelic missense variants in KIF24, which encodes a kinesin family member controlling ciliogenesis. In families 1 and 3, with the more severe phenotype, the affected subjects harbored homozygous variants (c.1457A>G; p.(Ile486Val) and c.1565A>G; p.(Asn522Ser), respectively) in the motor domain which plays a crucial role in KIF24 function. In family 2, compound heterozygous variants (c.1697C>T; p.(Ser566Phe)/c.1811C>T; p.(Thr604Met)) were found C-terminal to the motor domain, in agreement with a genotype-phenotype correlation. In vitro experiments performed on amnioblasts of one affected fetus from family 3 showed that primary cilia assembly was severely impaired, and that cytokinesis was also affected. In conclusion, our study describes novel forms of skeletal dysplasia associated with biallelic variants in KIF24. To our knowledge this is the first report implicating KIF24 variants as the cause of a skeletal dysplasia, thereby extending the genetic heterogeneity and the phenotypic spectrum of rare bone disorders and underscoring the wide range of monogenetic skeletal ciliopathies. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Ciliopatias , Nanismo , Osteocondrodisplasias , Animais , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Nanismo/diagnóstico por imagem , Nanismo/genética , Humanos , Mutação/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Linhagem , Fenótipo
6.
Proc Natl Acad Sci U S A ; 119(18): e2115960119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482924

RESUMO

Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy belonging to the ciliopathy disorders and known as the most common cause of hereditary end-stage renal disease in children. Yet, no curative treatment is available. The major gene, NPHP1, encodes a protein playing key functions at the primary cilium and cellular junctions. Using a medium-throughput drug-screen in NPHP1 knockdown cells, we identified 51 Food and Drug Administration-approved compounds by their ability to alleviate the cellular phenotypes associated with the loss of NPHP1; 11 compounds were further selected for their physicochemical properties. Among those compounds, prostaglandin E1 (PGE1) rescued ciliogenesis defects in immortalized patient NPHP1 urine-derived renal tubular cells, and improved ciliary and kidney phenotypes in our NPH zebrafish and Nphp1 knockout mouse models. Furthermore, Taprenepag, a nonprostanoid prostaglandin E2 receptor agonist, alleviated the severe retinopathy observed in Nphp1−/− mice. Finally, comparative transcriptomics allowed identification of key signaling pathways downstream PGE1, including cell cycle progression, extracellular matrix, adhesion, or actin cytoskeleton organization. In conclusion, using in vitro and in vivo models, we showed that prostaglandin E2 receptor agonists can ameliorate several of the pleotropic phenotypes caused by the absence of NPHP1; this opens their potential as a first therapeutic option for juvenile NPH-associated ciliopathies.


Assuntos
Ciliopatias , Doenças Renais Policísticas , Animais , Cílios/metabolismo , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo , Feminino , Humanos , Doenças Renais Císticas/congênito , Masculino , Camundongos , Doenças Renais Policísticas/metabolismo , Prostaglandinas/metabolismo , Receptores de Prostaglandina E/metabolismo , Peixe-Zebra
7.
Front Cell Dev Biol ; 9: 653138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055783

RESUMO

Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.

8.
J Cell Sci ; 134(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483367

RESUMO

Ciliogenesis is a coordinated process initiated by the recruitment and fusion of pre-ciliary vesicles at the distal appendages of the mother centriole through mechanisms that remain unclear. Here, we report that EFA6A (also known as PSD), an exchange factor for the small G protein Arf6, is involved in early stage of ciliogenesis by promoting the fusion of distal appendage vesicles forming the ciliary vesicle. EFA6A is present in the vicinity of the mother centriole before primary cilium assembly and prior to the arrival of Arl13B-containing vesicles. During ciliogenesis, EFA6A initially accumulates at the mother centriole and later colocalizes with Arl13B along the ciliary membrane. EFA6A depletion leads to the inhibition of ciliogenesis, the absence of centrosomal Rab8-positive structures and the accumulation of Arl13B-positive vesicles around the distal appendages. Our results uncover a novel fusion machinery, comprising EFA6A, Arf6 and Arl13B, that controls the coordinated fusion of ciliary vesicles docked at the distal appendages of the mother centriole.


Assuntos
Fatores de Ribosilação do ADP , Centríolos , Cílios , Fatores de Troca do Nucleotídeo Guanina , Animais , Linhagem Celular , Vesículas Citoplasmáticas
9.
Kidney Int ; 98(4): 958-969, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32505465

RESUMO

Biallelic mutations in MAPKBP1 were recently associated with late-onset cilia-independent nephronophthisis. MAPKBP1 was found at mitotic spindle poles but could not be detected at primary cilia or centrosomes. Here, by identification and characterization of novel MAPKBP1 variants, we aimed at further investigating its role in health and disease. Genetic analysis was done by exome sequencing, homozygosity mapping, and a targeted kidney gene panel while coimmunoprecipitation was used to explore wild-type and mutant protein-protein interactions. Expression of MAPKBP1 in non-ciliated HeLa and ciliated inner medullary collecting duct cells enabled co-localization studies by fluorescence microscopy. By next generation sequencing, we identified two novel homozygous MAPKBP1 splice-site variants in patients with nephronophthisis-related chronic kidney disease. Splice-site analyses revealed truncation of C-terminal coiled-coil domains and patient-derived deletion constructs lost their ability to homodimerize and heterodimerize with paralogous WDR62. While wild-type MAPKBP1 exhibited centrosomal, basal body, and microtubule association, mutant proteins lost the latter and showed reduced recruitment to cell cycle dependent centriolar structures. Wild-type and mutant proteins had no reciprocal influence upon co-expression excluding dominant negative effects. Thus, MAPKBP1 appears to be a novel microtubule-binding protein with cell cycle dependent centriolar localization. Truncation of its coiled-coil domain is enough to abrogate its dimerization and results in severely disturbed intracellular localizations. Delineating the impact of impaired dimerization on cell cycle regulation and intracellular kidney signaling may provide new insights into common mechanisms of kidney degeneration. Thus, due to milder clinical presentation, MAPKBP1-associated nephronophthisis should be considered in adult patients with otherwise unexplained chronic kidney disease.


Assuntos
Centrossomo , Doenças Renais Policísticas , Adulto , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Dimerização , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/metabolismo , Doenças Renais Policísticas/metabolismo
10.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348467

RESUMO

Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.


Assuntos
Aurora Quinase A/metabolismo , Ciclo Celular/genética , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Corpos Basais/metabolismo , Cromatografia Líquida , Cílios/genética , Cílios/patologia , Células HEK293 , Humanos , Interfase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Mitose/genética , Proteínas Oncogênicas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Canais de Sódio/metabolismo , Espectrometria de Massas em Tandem
11.
Biol Cell ; 111(9): 217-231, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177551

RESUMO

Ciliopathies are complex genetic multi-system disorders causally related to abnormal assembly or function of motile or non-motile cilia. While most human cells possess a non-motile sensory/primary cilium (PC) during development and/or in adult tissues, motile cilia are restricted to specialised cells. As a result, PC-associated ciliopathies are characterised by high phenotypic variability with extensive clinical and genetic overlaps. In the present review, we have focused on cerebral developmental anomalies, which are commonly found in PC-associated ciliopathies and which have mostly been linked to Hedgehog signalling defects. In addition, we have reviewed emerging evidence that PC dysfunctions could be directly or indirectly involved in the mechanisms underlying malformations of cerebral cortical development including primary microcephaly.


Assuntos
Agenesia do Corpo Caloso/embriologia , Cerebelo/anormalidades , Cílios/patologia , Ciliopatias/embriologia , Hidrocefalia/embriologia , Malformações do Sistema Nervoso/embriologia , Defeitos do Tubo Neural/embriologia , Animais , Cerebelo/embriologia , Deficiências do Desenvolvimento , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Transdução de Sinais
12.
Hum Mol Genet ; 28(16): 2720-2737, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31042281

RESUMO

Mutations in genes encoding components of the intraflagellar transport (IFT) complexes have previously been associated with a spectrum of diseases collectively termed ciliopathies. Ciliopathies relate to defects in the formation or function of the cilium, a sensory or motile organelle present on the surface of most cell types. IFT52 is a key component of the IFT-B complex and ensures the interaction of the two subcomplexes, IFT-B1 and IFT-B2. Here, we report novel IFT52 biallelic mutations in cases with a short-rib thoracic dysplasia (SRTD) or a congenital anomaly of kidney and urinary tract (CAKUT). Combining in vitro and in vivo studies in zebrafish, we showed that SRTD-associated missense mutation impairs IFT-B complex assembly and IFT-B2 ciliary localization, resulting in decreased cilia length. In comparison, CAKUT-associated missense mutation has a mild pathogenicity, thus explaining the lack of skeletal defects in CAKUT case. In parallel, we demonstrated that the previously reported homozygous nonsense IFT52 mutation associated with Sensenbrenner syndrome [Girisha et al. (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet., 90, 536-539] leads to exon skipping and results in a partially functional protein. Finally, our work uncovered a novel role for IFT52 in microtubule network regulation. We showed that IFT52 interacts and partially co-localized with centrin at the distal end of centrioles where it is involved in its recruitment and/or maintenance. Alteration of this function likely contributes to centriole splitting observed in Ift52-/- cells. Altogether, our findings allow a better comprehensive genotype-phenotype correlation among IFT52-related cases and revealed a novel, extra-ciliary role for IFT52, i.e. disruption may contribute to pathophysiological mechanisms.


Assuntos
Proteínas de Transporte/genética , Centrossomo/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Microtúbulos/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Cílios/metabolismo , Consanguinidade , Análise Mutacional de DNA , Feminino , Genótipo , Homozigoto , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Linhagem , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Sequenciamento do Exoma , Peixe-Zebra
13.
Methods Mol Biol ; 1957: 271-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919360

RESUMO

Primary cilia (PC) are microtubule-based organelles that behave like a cellular antenna controlling key signaling pathways during development and tissue homeostasis. The ciliary membrane is highly enriched for G protein-coupled receptors (GPCRs), and PC are a crucial signaling compartment for this large receptor family. Downstream effectors of GPCR signaling are also present in cilia, and evidence obtained by our labs and others demonstrated that ß-arrestin (ßarr) family members are differentially recruited to PC and have investigated the role of GPCR activation in this process. In this chapter, we provide methods based on fluorescence microscopy on fixed or live cells suitable for investigating targeting and recruitment of ßarrs at PC.


Assuntos
Corpos Basais/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Microscopia de Fluorescência/métodos , beta-Arrestina 2/metabolismo , Animais , Corpos Basais/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Centrossomo/efeitos dos fármacos , Cílios/efeitos dos fármacos , DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Plasmídeos/metabolismo , Somatostatina/farmacologia
14.
Biol Cell ; 111(4): 79-94, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30720881

RESUMO

Cilia and flagella are microtubule-based antenna which are highly conserved among eukaryotes. In vertebrates, primary and motile cilia have evolved to exert several key functions during development and tissue homoeostasis. Ciliary dysfunction in humans causes a highly heterogeneous group of diseases called ciliopathies, a class of genetic multisystemic disorders primarily affecting kidney, skeleton, retina, lung and the central nervous system. Among key ciliary proteins, kinesin family members (KIF) are microtubule-interacting proteins involved in many diverse cellular functions, including transport of cargo (organelles, proteins and lipids) along microtubules and regulating the dynamics of cytoplasmic and spindle microtubules through their depolymerising activity. Many KIFs are also involved in diverse ciliary functions including assembly/disassembly, motility and signalling. We here review these ciliary kinesins in vertebrates and focus on their involvement in ciliopathy-related disorders.


Assuntos
Cílios , Ciliopatias , Cinesinas , Animais , Transporte Biológico , Cílios/metabolismo , Cílios/patologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Humanos , Cinesinas/classificação , Cinesinas/metabolismo , Cinesinas/fisiologia
15.
Am J Hum Genet ; 104(2): 348-355, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661770

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) is characterized by high-range proteinuria and most often focal and segmental glomerulosclerosis (FSGS). Identification of mutations in genes causing SRNS has improved our understanding of disease mechanisms and highlighted defects in the podocyte, a highly specialized glomerular epithelial cell, as major factors in disease pathogenesis. By exome sequencing, we identified missense mutations in TBC1D8B in two families with an X-linked early-onset SRNS with FSGS. TBC1D8B is an uncharacterized Rab-GTPase-activating protein likely involved in endocytic and recycling pathways. Immunofluorescence studies revealed TBC1D8B presence in human glomeruli, and affected individual podocytes displayed architectural changes associated with migration defects commonly found in FSGS. In zebrafish we demonstrated that both knockdown and knockout of the unique TBC1D8B ortholog-induced proteinuria and that this phenotype was rescued by human TBC1D8B mRNA injection, but not by either of the two mutated mRNAs. We also showed an interaction between TBC1D8B and Rab11b, a key protein in vesicular recycling in cells. Interestingly, both internalization and recycling processes were dramatically decreased in affected individuals' podocytes and fibroblasts, confirming the crucial role of TBC1D8B in the cellular recycling processes, probably as a Rab11b GTPase-activating protein. Altogether, these results confirmed that pathogenic variations in TBC1D8B are involved in X-linked podocytopathy and points to alterations in recycling processes as a mechanism of SRNS.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação com Perda de Função , Síndrome Nefrótica/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Peixe-Zebra/genética , Animais , Transporte Biológico/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Glomérulos Renais/metabolismo , Masculino , Podócitos/citologia , Podócitos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
16.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388224

RESUMO

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Assuntos
Anormalidades Congênitas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Nefropatias/congênito , Rim/anormalidades , Cinesinas/genética , Mutação com Perda de Função , Microcefalia/genética , Proteínas Oncogênicas/genética , Animais , Anormalidades Congênitas/metabolismo , Citocinese/genética , Modelos Animais de Doenças , Feminino , Imunofluorescência , Genes Letais , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patologia , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Linhagem , Fenótipo , Relação Estrutura-Atividade , Peixe-Zebra
17.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2448-2457, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29660491

RESUMO

Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r2 = 0.68, P = 9.2 × 10-32). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Nefropatias , Proteínas de Membrana , Mutação de Sentido Incorreto , Podócitos/metabolismo , Multimerização Proteica/genética , Substituição de Aminoácidos , Linhagem Celular Transformada , Transferência Ressonante de Energia de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Podócitos/patologia , Domínios Proteicos
18.
Hum Mol Genet ; 27(2): 266-282, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121203

RESUMO

A child presenting with Mainzer-Saldino syndrome (MZSDS), characterized by renal, retinal and skeletal involvements, was also diagnosed with lung infections and airway ciliary dyskinesia. These manifestations suggested dysfunction of both primary and motile cilia, respectively. Targeted exome sequencing identified biallelic mutations in WDR19, encoding an IFT-A subunit previously associated with MZSDS-related chondrodysplasia, Jeune asphyxiating thoracic dysplasia and cranioectodermal dysplasia, linked to primary cilia dysfunction, and in TEKT1 which encodes tektin-1 an uncharacterized member of the tektin family, mutations of which may cause ciliary dyskinesia. Tektin-1 localizes at the centrosome in cycling cells, at basal bodies of both primary and motile cilia and to the axoneme of motile cilia in airway cells. The identified mutations impaired these localizations. In addition, airway cells from the affected individual showed severe motility defects without major ultrastructural changes. Knockdown of tekt1 in zebrafish resulted in phenotypes consistent with a function for tektin-1 in ciliary motility, which was confirmed by live imaging. Finally, experiments in the zebrafish also revealed a synergistic effect of tekt1 and wdr19. Altogether, our data show genetic interactions between WDR19 and TEKT1 likely contributing to the overall clinical phenotype observed in the affected individual and provide strong evidence for TEKT1 as a new candidate gene for primary ciliary dyskinesia.


Assuntos
Cílios/genética , Ciliopatias/genética , Proteínas dos Microtúbulos/genética , Animais , Osso e Ossos/anormalidades , Ataxia Cerebelar/genética , Criança , Transtornos da Motilidade Ciliar/genética , Ciliopatias/metabolismo , Craniossinostoses/genética , Proteínas do Citoesqueleto , Displasia Ectodérmica/genética , Exoma , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas dos Microtúbulos/metabolismo , Mutação , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Retinose Pigmentar/genética , Sequenciamento do Exoma , Peixe-Zebra/genética
19.
Hum Mol Genet ; 27(2): 224-238, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29077851

RESUMO

Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.


Assuntos
Cílios/genética , Cinesinas/metabolismo , Malformações do Desenvolvimento Cortical/genética , Proteínas Repressoras/metabolismo , Animais , Encéfalo/metabolismo , Ciclo Celular/genética , Cílios/fisiologia , Células HeLa , Humanos , Cinesinas/genética , Malformações do Desenvolvimento Cortical/metabolismo , Camundongos , Microcefalia/metabolismo , Microtúbulos/metabolismo , Neurogênese , Proteínas Repressoras/genética , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...