Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 6(2): zcae028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38915758

RESUMO

Somatic mutations are desirable targets for selective elimination of cancer, yet most are found within noncoding regions. We have adapted the CRISPR-Cas9 gene editing tool as a novel, cancer-specific killing strategy by targeting the subset of somatic mutations that create protospacer adjacent motifs (PAMs), which have evolutionally allowed bacterial cells to distinguish between self and non-self DNA for Cas9-induced double strand breaks. Whole genome sequencing (WGS) of paired tumor minus normal (T-N) samples from three pancreatic cancer patients (Panc480, Panc504, and Panc1002) showed an average of 417 somatic PAMs per tumor produced from single base substitutions. Further analyses of 591 paired T-N samples from The International Cancer Genome Consortium found medians of ∼455 somatic PAMs per tumor in pancreatic, ∼2800 in lung, and ∼3200 in esophageal cancer cohorts. Finally, we demonstrated 69-99% selective cell death of three targeted pancreatic cancer cell lines using 4-9 sgRNAs designed using the somatic PAM discovery approach. We also showed no off-target activity from these tumor-specific sgRNAs in either the patient's normal cells or an irrelevant cancer using WGS. This study demonstrates the potential of CRISPR-Cas9 as a novel and selective anti-cancer strategy, and supports the genetic targeting of adult cancers.

2.
Comput Med Imaging Graph ; 115: 102386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718562

RESUMO

A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI), can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE). Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive, inspiring the epilepsy community to devise ways to predict which TBI patients will develop PTE and to identify potential biomarkers. In response to this need, our study collected comprehensive, longitudinal multimodal data from 48 TBI patients across multiple participating institutions. A supervised binary classification task was created, contrasting data from LPTS patients with those without LPTS. To accommodate missing modalities in some subjects, we took a two-pronged approach. Firstly, we extended a graphical model-based Bayesian estimator to directly classify subjects with incomplete modality. Secondly, we explored conventional imputation techniques. The imputed multimodal information was then combined, following several fusion and dimensionality reduction techniques found in the literature, and subsequently fitted to a kernel- or a tree-based classifier. For this fusion, we proposed two new algorithms: recursive elimination of correlated components (RECC) that filters information based on the correlation between the already selected features, and information decomposition and selective fusion (IDSF), which effectively recombines information from decomposed multimodal features. Our cross-validation findings showed that the proposed IDSF algorithm delivers superior performance based on the area under the curve (AUC) score. Ultimately, after rigorous statistical comparisons and interpretable machine learning examination using Shapley values of the most frequently selected features, we recommend the two following magnetic resonance imaging (MRI) abnormalities as potential biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the right middle temporal gyrus in functional MRI (fMRI).


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Aprendizado de Máquina , Neuroimagem , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Neuroimagem/métodos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/etiologia , Imagem Multimodal/métodos , Convulsões/diagnóstico por imagem , Teorema de Bayes , Pessoa de Meia-Idade
3.
Nutrients ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38613067

RESUMO

Students are required to complete supervised practice hours prior to becoming Registered Dietitians and Physician Assistants. Research suggests that environmental and social factors affect dietetic interns' diets during their internship, although these factors have not been studied among physician assistant interns. This cross-sectional study utilized an online survey to compare dietetic interns' (n = 81) and physician assistant interns' (n = 79) fruit and vegetable intake, food security, barriers to healthy eating, and empowerment for making healthy dietary choices during an internship. Differences were assessed via independent t-tests and chi-square distributions. The significance was set at p < 0.05. Dietetic interns had a higher vegetable intake (p = 0.002) while physician assistant interns had higher rates of food insecurity (p = 0.040). Dietetic interns reported a greater impact on their dietary choices due to mental fatigue (p = 0.006), while physician assistant interns' dietary choices were more heavily impacted by peer influence, interactions with patients, and interactions with preceptors (p < 0.05). There was not a group difference in overall empowerment (p = 0.157), although both groups rated empowerment for asking for help with food and nutrition challenges the lowest of the empowerment sub-items. Addressing interns' unique needs may support students' educational success and wellbeing once they are professionals, promote a diverse workforce, and ensure optimal care for patients.


Assuntos
Dietética , Assistentes Médicos , Humanos , Frutas , Dieta Saudável , Estudos Transversais , Projetos Piloto , Verduras , Segurança Alimentar
4.
Epilepsy Res ; 195: 107201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562146

RESUMO

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Assuntos
Epilepsia Pós-Traumática , Epilepsia , Animais , Epilepsia Pós-Traumática/tratamento farmacológico , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem
5.
Front Neuroimaging ; 2: 1068591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554636

RESUMO

Traumatic brain injury (TBI) often results in heterogenous lesions that can be visualized through various neuroimaging techniques, such as magnetic resonance imaging (MRI). However, injury burden varies greatly between patients and structural deformations often impact usability of available analytic algorithms. Therefore, it is difficult to segment lesions automatically and accurately in TBI cohorts. Mislabeled lesions will ultimately lead to inaccurate findings regarding imaging biomarkers. Therefore, manual segmentation is currently considered the gold standard as this produces more accurate masks than existing automated algorithms. These masks can provide important lesion phenotype data including location, volume, and intensity, among others. There has been a recent push to investigate the correlation between these characteristics and the onset of post traumatic epilepsy (PTE), a disabling consequence of TBI. One motivation of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is to identify reliable imaging biomarkers of PTE. Here, we report the protocol and importance of our manual segmentation process in patients with moderate-severe TBI enrolled in EpiBioS4Rx. Through these methods, we have generated a dataset of 127 validated lesion segmentation masks for TBI patients. These ground-truths can be used for robust PTE biomarker analyses, including optimization of multimodal MRI analysis via inclusion of lesioned tissue labels. Moreover, our protocol allows for analysis of the refinement process. Though tedious, the methods reported in this work are necessary to create reliable data for effective training of future machine-learning based lesion segmentation methods in TBI patients and subsequent PTE analyses.

6.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37131822

RESUMO

Somatic mutations are desirable targets for selective elimination of cancer, yet most are found within the noncoding regions. We propose a novel, cancer-specific killing approach using CRISPR-Cas9 which exploits the requirement of a protospacer adjacent motif (PAM) for Cas9 activity. Through whole genome sequencing (WGS) of paired tumor minus normal (T-N) samples from three pancreatic cancer patients (Panc480, Panc504, and Panc1002), we identified an average of 417 somatic PAMs per tumor produced from single base substitutions. We analyzed 591 paired T-N samples from The International Cancer Genome Consortium and discovered medians of ~455 somatic PAMs per tumor in pancreatic, ~2800 in lung, and ~3200 in esophageal cancer cohorts. Finally, we demonstrated >80% selective cell death of two targeted pancreatic cancer cell lines in co-cultures using 4-9 sgRNAs, targeting noncoding regions, designed from the somatic PAM discovery approach. We also showed no off-target activity from these tumor-specific sgRNAs through WGS.

7.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066222

RESUMO

When we transduced pancreatic cancers with sgRNAs that targeted 2-16 target sites in the human genome, we found that increasing the number of CRISPR-Cas9 target sites produced greater cytotoxicity, with >99% growth inhibition observed by targeting only 12 sites. However, cell death was delayed by 2-3 weeks after sgRNA transduction, in contrast to the repair of double strand DNA breaks (DSBs) that happened within 3 days after transduction. To explain this discrepancy, we used both cytogenetics and whole genome sequencing to interrogate the genome. We first detected chromatid and chromosome breaks, followed by radial formations, dicentric, ring chromosomes, and other chromosomal aberrations that peaked at 14 days after transduction. Structural variants (SVs) were detected at sites that were directly targeted by CRISPR-Cas9, including SVs generated from two sites that were targeted, but the vast majority of SVs (89.4%) were detected elsewhere in the genome that arose later than those directly targeted. Cells also underwent polyploidization that peaked at day 10 as detected by XY FISH assay, and ultimately died via apoptosis. Overall, we found that the simultaneous DSBs induced by CRISPR-Cas9 in pancreatic cancers caused chromosomal instability and polyploidization that ultimately led to delayed cell death.

8.
Muscle Nerve ; 63(6): 928-940, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651408

RESUMO

INTRODUCTION: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS: Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS: Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION: Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Distrofia Miotônica/genética , Adulto , Animais , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos/patologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Peixe-Zebra
9.
Brain Imaging Behav ; 15(6): 2804-2812, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34985618

RESUMO

Traumatic brain injury (TBI) can produce heterogeneous injury patterns including a variety of hemorrhagic and non-hemorrhagic lesions. The impact of lesion size, location, and interaction between total number and location of contusions may influence the occurrence of seizures after TBI. We report our methodologic approach to this question in this preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We describe lesion identification and segmentation of hemorrhagic contusions by early posttraumatic magnetic resonance imaging (MRI). We describe the preliminary methods of manual lesion segmentation in an initial cohort of 32 TBI patients from the EpiBioS4Rx cohort and the preliminary association of hemorrhagic contusion and edema location and volume to seizure incidence.


Assuntos
Lesões Encefálicas Traumáticas , Contusões , Epilepsia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Biologia Computacional , Epilepsia/diagnóstico por imagem , Epilepsia/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética
10.
Proc Natl Acad Sci U S A ; 116(46): 23232-23242, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659023

RESUMO

PM20D1 is a candidate thermogenic enzyme in mouse fat, with its expression cold-induced and enriched in brown versus white adipocytes. Thiazolidinedione (TZD) antidiabetic drugs, which activate the peroxisome proliferator-activated receptor-γ (PPARγ) nuclear receptor, are potent stimuli for adipocyte browning yet fail to induce Pm20d1 expression in mouse adipocytes. In contrast, PM20D1 is one of the most strongly TZD-induced transcripts in human adipocytes, although not in cells from all individuals. Two putative PPARγ binding sites exist near the gene's transcription start site (TSS) in human but not mouse adipocytes. The -4 kb upstream site falls in a segmental duplication of a nearly identical intronic region +2.5 kb downstream of the TSS, and this duplication occurred in the primate lineage and not in other mammals, like mice. PPARγ binding and gene activation occur via this upstream duplicated site, thus explaining the species difference. Furthermore, this functional upstream PPARγ site exhibits genetic variation among people, with 1 SNP allele disrupting a PPAR response element and giving less activation by PPARγ and TZDs. In addition to this upstream variant that determines PPARγ regulation of PM20D1 in adipocytes, distinct variants downstream of the TSS have strong effects on PM20D1 expression in human fat as well as other tissues. A haplotype of 7 tightly linked downstream SNP alleles is associated with very low PMD201 expression and correspondingly high DNA methylation at the TSS. These PM20D1 low-expression variants may account for human genetic associations in this region with obesity as well as neurodegenerative diseases.


Assuntos
Adipócitos/metabolismo , Amidoidrolases/metabolismo , PPAR gama/metabolismo , Tecido Adiposo/metabolismo , Amidoidrolases/genética , Animais , Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Humanos , Masculino , Camundongos , Obesidade/genética , Fenótipo , Tiazolidinedionas
11.
Neurol Genet ; 5(2): e312, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31041394

RESUMO

OBJECTIVE: To identify the genetic cause of disease in a form of congenital spinal muscular atrophy and arthrogryposis (CSMAA). METHODS: A 2-year-old boy was diagnosed with arthrogryposis multiplex congenita, severe skeletal abnormalities, torticollis, vocal cord paralysis, and diminished lower limb movement. Whole-exome sequencing (WES) was performed on the proband and family members. In silico modeling of protein structure and heterologous protein expression and cytotoxicity assays were performed to validate pathogenicity of the identified variant. RESULTS: WES revealed a homozygous mutation in the TRPV4 gene (c.281C>T; p.S94L). The identification of a recessive mutation in TRPV4 extends the spectrum of mutations in recessive forms of the TRPV4-associated disease. p.S94L and other previously identified TRPV4 variants in different protein domains were compared in structural modeling and functional studies. In silico structural modeling suggests that the p.S94L mutation is in the disordered N-terminal region proximal to important regulatory binding sites for phosphoinositides and for PACSIN3, which could lead to alterations in trafficking and/or channel sensitivity. Functional studies by Western blot and immunohistochemical analysis show that p.S94L increased TRPV4 activity-based cytotoxicity and resultant decreased TRPV4 expression levels, therefore involves a gain-of-function mechanism. CONCLUSIONS: This study identifies a novel homozygous mutation in TRPV4 as a cause of the recessive form of CSMAA.

12.
PLoS Genet ; 14(3): e1007226, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518074

RESUMO

Gene expression in a tissue-specific context depends on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in skeletal muscle remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for skeletal muscle growth and regeneration. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts during myogenesis. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression in skeletal muscles.


Assuntos
RNA Helicases DEAD-box/metabolismo , Músculo Esquelético/fisiologia , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Embrião não Mamífero , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/citologia , Mioblastos/fisiologia , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , RNA Ribossômico/genética , Regeneração/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Arch Microbiol ; 198(6): 541-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27017337

RESUMO

Salmonella is a threat to public health due to consumption of contaminated food. Screening of a transposon library identified a unique mutant that was growth and host cell binding deficient. The objective of this study was to determine the functional role of glucosamine-6-phosphate synthase (GlmS) in the biology and pathogenesis of Salmonella. To examine this, we created a glmS mutant (ΔglmS) of Salmonella and examined the effect on cell envelope integrity, growth, metabolism, and pathogenesis. Our data indicated ΔglmS was defective in growth unless media were supplemented with D-glucosamine (D-GlcN). Examination of the bacterial cell envelope revealed that ΔglmS was highly sensitive to detergents, hydrophobic antibiotics, and bile salts compared to the wild type (WT). A release assay indicated that ΔglmS secreted higher amounts of ß-lactamase than the WT in culture supernatant fractions. Furthermore, ΔglmS was attenuated in cell culture models of Salmonella infection. Taken together, this study determined an important role for GlmS in the pathogenesis and biology of Salmonella.


Assuntos
Proteínas de Bactérias/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Membrana Celular/fisiologia , Detergentes/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Humanos , Infecções por Salmonella/microbiologia , Salmonella enteritidis/enzimologia , Salmonella enteritidis/metabolismo , Virulência/genética
14.
Hum Genet ; 135(2): 245-251, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26742501

RESUMO

Golgi apparatus (GA) is a membrane-bound organelle that serves a multitude of critical cellular functions including protein secretion and sorting, and cellular polarity. Many Mendelian diseases are caused by mutations in genes encoding various components of GA. GOLGA2 encodes GM130, a necessary component for the assembly of GA as a single complex, and its deficiency has been found to result in severe cellular phenotypes. We describe the first human patient with a homozygous apparently loss of function mutation in GOLGA2. The phenotype is a neuromuscular disorder characterized by developmental delay, seizures, progressive microcephaly, and muscular dystrophy. Knockdown of golga2 in zebrafish resulted in severe skeletal muscle disorganization and microcephaly recapitulating loss of function human phenotype. Our data suggest an important developmental role of GM130 in humans and zebrafish.


Assuntos
Autoantígenos/genética , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Distrofias Musculares/genética , Alelos , Sequência de Aminoácidos , Animais , Autoantígenos/metabolismo , Mapeamento Cromossômico , Exoma , Éxons , Feminino , Mutação da Fase de Leitura , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Humanos , Lactente , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Microcefalia/genética , Dados de Sequência Molecular , Morfolinos/metabolismo , Músculo Esquelético/patologia , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
15.
Mol Biol Cell ; 23(1): 45-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072794

RESUMO

Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother-daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quitina Sintase/metabolismo , Retículo Endoplasmático/enzimologia , Mitose , Transporte Proteico , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Actomiosina/metabolismo , Substituição de Aminoácidos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Quitina Sintase/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Citocinese , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Imagem com Lapso de Tempo
16.
Clin Lab Sci ; 21(3): 185-90; quiz 191-2, following 192, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18678141

RESUMO

The current protocols in place for bladder cancer screening are cystoscopy and urine cytology. Cytology does not have an adequate sensitivity in low-grade malignancy and has limited utility in the screening and management of bladder cancer patients. Urine tumor markers aimed at detection of cancer via voided urine are an attractive alternative to cytology. Currently, FDA-approved tumor marker assays lack the characteristics of an ideal test and have yet to revolutionize bladder cancer detection. Novel tumor markers, not yet FDA-approved, have the potential to change disease management algorithms that currently include voided urine cytology. Telomerase, an enzyme present in greater than 80% of all cancer cells, has the potential to be a successful bladder tumor marker for cancer surveillance and monitoring.


Assuntos
Biomarcadores Tumorais/urina , Telomerase/urina , Neoplasias da Bexiga Urinária/urina , Humanos , Proteínas Nucleares/urina , Kit de Reagentes para Diagnóstico , Neoplasias da Bexiga Urinária/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...