Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
3.
Nat Neurosci ; 27(1): 34-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996528

RESUMO

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Axônios/fisiologia , Denervação , Proteínas de Ligação a DNA/genética , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Neurônios Motores/metabolismo , Estatmina/genética , Estatmina/metabolismo
4.
Neuron ; 111(16): 2465-2468, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37354903

RESUMO

The regulatory approvals of nusinersen and tofersen, plus the large body of clinical and preclinical data from other drugs, have significantly de-risked antisense technology for neurological diseases. The platform learnings over the last 2 decades can be applied to subsequent drugs to improve the efficiency of discovering effective neuro-therapeutics.


Assuntos
Doenças do Sistema Nervoso , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética
6.
Mol Ther Nucleic Acids ; 32: 289-301, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096163

RESUMO

Antisense oligonucleotides (ASOs) are short synthetic nucleic acids that recognize and bind to complementary RNA to modulate gene expression. It is well established that single-stranded, phosphorothioate-modified ASOs enter cells independent of carrier molecules, primarily via endocytic pathways, but that only a small portion of internalized ASO is released into the cytosol and/or nucleus, rendering the majority of ASO inaccessible to the targeted RNA. Identifying pathways that can increase the available ASO pool is valuable as a research tool and therapeutically. Here, we conducted a functional genomic screen for ASO activity by engineering GFP splice reporter cells and applying genome-wide CRISPR gene activation. The screen can identify factors that enhance ASO splice modulation activity. Characterization of hit genes uncovered GOLGA8, a largely uncharacterized protein, as a novel positive regulator enhancing ASO activity by ∼2-fold. Bulk ASO uptake is 2- to 5-fold higher in GOLGA8-overexpressing cells where GOLGA8 and ASOs are observed in the same intracellular compartments. We find GOLGA8 is highly localized to the trans-Golgi and readily detectable at the plasma membrane. Interestingly, overexpression of GOLGA8 increased activity for both splice modulation and RNase H1-dependent ASOs. Taken together, these results support a novel role for GOLGA8 in productive ASO uptake.

7.
Nat Med ; 29(6): 1437-1447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095250

RESUMO

Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
8.
Science ; 379(6637): 1140-1149, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927019

RESUMO

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Assuntos
Proteínas de Ligação a DNA , Edição de Genes , Poliadenilação , Splicing de RNA , Estatmina , Proteinopatias TDP-43 , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Estatmina/genética , Estatmina/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/terapia , Sítios de Splice de RNA , Oligonucleotídeos Antissenso/genética , Crescimento Neuronal
9.
Lancet Neurol ; 22(3): 218-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804094

RESUMO

BACKGROUND: Myotonic dystrophy type 1 results from an RNA gain-of-function mutation, in which DM1 protein kinase (DMPK) transcripts carrying expanded trinucleotide repeats exert deleterious effects. Antisense oligonucleotides (ASOs) provide a promising approach to treatment of myotonic dystrophy type 1 because they reduce toxic RNA levels. We aimed to investigate the safety of baliforsen (ISIS 598769), an ASO targeting DMPK mRNA. METHODS: In this dose-escalation phase 1/2a trial, adults aged 20-55 years with myotonic dystrophy type 1 were enrolled at seven tertiary referral centres in the USA and randomly assigned via an interactive web or phone response system to subcutaneous injections of baliforsen 100 mg, 200 mg, or 300 mg, or placebo (6:2 randomisation at each dose level), or to baliforsen 400 mg or 600 mg, or placebo (10:2 randomisation at each dose level), on days 1, 3, 5, 8, 15, 22, 29, and 36. Sponsor personnel directly involved with the trial, participants, and all study personnel were masked to treatment assignments. The primary outcome measure was safety in all participants who received at least one dose of study drug up to day 134. This trial is registered with ClinicalTrials.gov (NCT02312011), and is complete. FINDINGS: Between Dec 12, 2014, and Feb 22, 2016, 49 participants were enrolled and randomly assigned to baliforsen 100 mg (n=7, one patient not dosed), 200 mg (n=6), 300 mg (n=6), 400 mg (n=10), 600 mg (n=10), or placebo (n=10). The safety population comprised 48 participants who received at least one dose of study drug. Treatment-emergent adverse events were reported for 36 (95%) of 38 participants assigned to baliforsen and nine (90%) of ten participants assigned to placebo. Aside from injection-site reactions, common treatment-emergent adverse events were headache (baliforsen: ten [26%] of 38 participants; placebo: four [40%] of ten participants), contusion (baliforsen: seven [18%] of 38; placebo: one [10%] of ten), and nausea (baliforsen: six [16%] of 38; placebo: two [20%] of ten). Most adverse events (baliforsen: 425 [86%] of 494; placebo: 62 [85%] of 73) were mild in severity. One participant (baliforsen 600 mg) developed transient thrombocytopenia considered potentially treatment related. Baliforsen concentrations in skeletal muscle increased with dose. INTERPRETATION: Baliforsen was generally well tolerated. However, skeletal muscle drug concentrations were below levels predicted to achieve substantial target reduction. These results support the further investigation of ASOs as a therapeutic approach for myotonic dystrophy type 1, but suggest improved drug delivery to muscle is needed. FUNDING: Ionis Pharmaceuticals, Biogen.


Assuntos
Distrofia Miotônica , Oligonucleotídeos Antissenso , Adulto , Humanos , Método Duplo-Cego , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Miotonina Proteína Quinase , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA , RNA Mensageiro/metabolismo , Resultado do Tratamento
10.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835624

RESUMO

For SMA patients with only two SMN2 copies, available therapies might be insufficient to counteract lifelong motor neuron (MN) dysfunction. Therefore, additional SMN-independent compounds, supporting SMN-dependent therapies, might be beneficial. Neurocalcin delta (NCALD) reduction, an SMA protective genetic modifier, ameliorates SMA across species. In a low-dose SMN-ASO-treated severe SMA mouse model, presymptomatic intracerebroventricular (i.c.v.) injection of Ncald-ASO at postnatal day 2 (PND2) significantly ameliorates histological and electrophysiological SMA hallmarks at PND21. However, contrary to SMN-ASOs, Ncald-ASOs show a shorter duration of action limiting a long-term benefit. Here, we investigated the longer-term effect of Ncald-ASOs by additional i.c.v. bolus injection at PND28. Two weeks after injection of 500 µg Ncald-ASO in wild-type mice, NCALD was significantly reduced in the brain and spinal cord and well tolerated. Next, we performed a double-blinded preclinical study combining low-dose SMN-ASO (PND1) with 2× i.c.v. Ncald-ASO or CTRL-ASO (100 µg at PND2, 500 µg at PND28). Ncald-ASO re-injection significantly ameliorated electrophysiological defects and NMJ denervation at 2 months. Moreover, we developed and identified a non-toxic and highly efficient human NCALD-ASO that significantly reduced NCALD in hiPSC-derived MNs. This improved both neuronal activity and growth cone maturation of SMA MNs, emphasizing the additional protective effect of NCALD-ASO treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Camundongos , Animais , Humanos , Atrofia Muscular Espinal/genética , Neurocalcina , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Oligonucleotídeos/farmacologia , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor
11.
Clin Pharmacol Drug Dev ; 11(10): 1191-1202, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35971951

RESUMO

Dose-dependent reductions in hepatitis B virus (HBV) RNA, DNA, and viral proteins following bepirovirsen administration were observed in HepG2.2.15 cells. In HBV-transgenic mice treated at 50 mg/kg/wk, hepatic HBV RNA and DNA were reduced by 90% and 99%, respectively. Subsequently, a phase 1 first-in-human study assessed pharmacokinetics and tolerability of single (75-450 mg) and multiple (150-450 mg on days 1, 4, 8, 11, 15, and 22) subcutaneous bepirovirsen doses in 96 healthy volunteers. Bepirovirsen at all dose levels was rapidly absorbed (maximum plasma concentration 3-8 hours after dosing), rapidly distributed to peripheral tissues, and slowly eliminated (median plasma terminal half-life: 22.5-24.6 days across cohorts). Plasma exposure (dose-proportional at 150-450 mg) and concentration-time profiles were similar following the first and sixth doses, suggesting little to no plasma accumulation (steady state achieved by day 22). Renal elimination of full-length bepirovirsen accounted for <2% of the total dose. Across the single and multiple dose cohorts, 197 treatment-emergent adverse events were reported, with 99% and 65% classified as mild in severity and local injection site reactions, respectively. In conclusion, bepirovirsen showed an acceptable safety profile in humans with observed pharmacokinetics consistent with the chemical class, warranting further evaluation of bepirovirsen in chronic HBV infection.


Assuntos
Vírus da Hepatite B , Oligonucleotídeos Antissenso , Animais , Antivirais , Método Duplo-Cego , Vírus da Hepatite B/genética , Humanos , Camundongos , Camundongos Transgênicos , RNA , Proteínas Virais
12.
Gene Ther ; 29(12): 698-709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35075265

RESUMO

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Animais , Camundongos , Distrofia Miotônica/terapia , Distrofia Miotônica/tratamento farmacológico , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Expansão das Repetições de Trinucleotídeos , Proteínas de Ligação a RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo
13.
Cancer Res ; 82(5): 900-915, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921016

RESUMO

The M2 pyruvate kinase (PKM2) isoform is upregulated in most cancers and plays a crucial role in regulation of the Warburg effect, which is characterized by the preference for aerobic glycolysis over oxidative phosphorylation for energy metabolism. PKM2 is an alternative-splice isoform of the PKM gene and is a potential therapeutic target. Antisense oligonucleotides (ASO) that switch PKM splicing from the cancer-associated PKM2 to the PKM1 isoform have been shown to induce apoptosis in cultured glioblastoma cells when delivered by lipofection. Here, we explore the potential of ASO-based PKM splice switching as a targeted therapy for liver cancer. A more potent lead constrained-ethyl (cEt)/DNA ASO induced PKM splice switching and inhibited the growth of cultured hepatocellular carcinoma (HCC) cells. This PKM isoform switch increased pyruvate-kinase activity and altered glucose metabolism. In an orthotopic HCC xenograft mouse model, the lead ASO and a second ASO targeting a nonoverlapping site inhibited tumor growth. Finally, in a genetic HCC mouse model, a surrogate mouse-specific ASO induced Pkm splice switching and inhibited tumorigenesis, without observable toxicity. These results lay the groundwork for a potential ASO-based splicing therapy for HCC. SIGNIFICANCE: Antisense oligonucleotides are used to induce a change in PKM isoform usage in hepatocellular carcinoma, reversing the Warburg effect and inhibiting tumorigenesis.


Assuntos
Processamento Alternativo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Piruvato Quinase , Animais , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Glicólise/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Isoformas de Proteínas/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
14.
Nat Med ; 27(10): 1725-1734, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642494

RESUMO

Chronic infection with hepatitis B virus (HBV) leads to an increased risk of death from cirrhosis and hepatocellular carcinoma. Functional cure rates are low with current treatment options (nucleos(t)ide analogs (NAs) and pegylated interferons). Bepirovirsen is an antisense oligonucleotide targeting all HBV messenger RNAs; in cell culture and animal models, bepirovirsen leads to reductions in HBV-derived RNAs, HBV DNA and viral proteins. This phase 2 double-blinded, randomized, placebo-controlled trial is the first evaluation of the safety and activity of an antisense oligonucleotide targeting HBV RNA in both treatment-naïve and virally suppressed individuals with chronic HBV infection. The primary objective was to assess the safety and tolerability of bepirovirsen in individuals with chronic hepatitis B (CHB) (NCT02981602). The secondary objective was to assess antiviral activity, including the change from baseline to day 29 in serum hepatitis B surface antigen (HBsAg) concentration. Participants with CHB infection ≥6 months and serum HBsAg ≥50 IU ml-1 were enrolled from seven centers across Hong Kong and the Republic of Korea and randomized (3:1 within each dose cohort) to receive bepirovirsen or placebo via subcutaneous injection twice weekly during weeks 1 and 2 (days 1, 4, 8 and 11) and once weekly during weeks 3 and 4 (days 15 and 22). Participants were then followed for 26 weeks. Twenty-four participants were treatment-naïve and seven were receiving stable NA therapy. Treatment-emergent adverse events were mostly mild/moderate (most commonly injection site reactions). Eleven (61.1%) and three (50.0%) treatment-naïve participants experienced one or more treatment-emergent adverse event in the bepirovirsen and placebo groups, respectively. In participants receiving NA therapy, the corresponding numbers were three (60.0%) and one (50.0%). Transient, self-resolving alanine aminotransferase flares (≥2× upper limit of normal) were observed in eight treatment-naïve participants and three participants on stable NA regimens in the bepirovirsen treatment arms. HBsAg reductions were observed and were significant versus placebo for treatment-naïve participants receiving bepirovirsen 300 mg (P = 0.001), but not for the bepirovirsen 150 mg group (P = 0.245) or participants receiving stable NA therapy (P = 0.762). Two participants in each of the 300 mg dose groups achieved HBsAg levels below the lower limit of quantitation by day 29 (n = 3) or day 36 (n = 1). Bepirovirsen had a favorable safety profile. These preliminary observations warrant further investigation of the safety and activity of bepirovirsen in a larger CHB patient population.


Assuntos
Antivirais/administração & dosagem , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Adolescente , Adulto , Antivirais/efeitos adversos , Quimioterapia Combinada , Feminino , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/sangue , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/efeitos adversos , Placebos , Polietilenoglicóis/química , República da Coreia/epidemiologia , Adulto Jovem
15.
Nat Biotechnol ; 39(12): 1529-1536, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385691

RESUMO

Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5' end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood-brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.


Assuntos
Barreira Hematoencefálica , RNA , Animais , Sistema Nervoso Central/metabolismo , Colesterol/metabolismo , DNA/metabolismo , Camundongos , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , RNA/metabolismo , Ratos , Roedores
17.
Nat Neurosci ; 24(8): 1089-1099, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083786

RESUMO

Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease.


Assuntos
Giro Denteado , Células Ependimogliais , Neurogênese/fisiologia , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Animais , Reprogramação Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Oligonucleotídeos Antissenso
18.
Lancet Child Adolesc Health ; 5(7): 491-500, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089650

RESUMO

BACKGROUND: Nusinersen showed a favourable benefit-risk profile in participants with infantile-onset spinal muscular atrophy at the interim analysis of a phase 2 clinical study. We present the study's final analysis, assessing the efficacy and safety of nusinersen over 3 years. METHODS: This phase 2, open-label, multicentre, dose-escalation study was done in three university hospital sites in the USA and one in Canada. Infants aged between 3 weeks and 6 months with two or three SMN2 gene copies and infantile-onset spinal muscular atrophy were eligible for inclusion. Eligible participants received multiple intrathecal loading doses of 6 mg equivalent nusinersen (cohort 1) or 12 mg dose equivalent (cohort 2), followed by maintenance doses of 12 mg equivalent nusinersen. The protocol amendment on Jan 25, 2016, changed the primary efficacy endpoint from safety and tolerability to reaching motor milestones, assessed using the Hammersmith Infant Neurological Examination section 2 (HINE-2) at the last study visit, in all participants who successfully completed the loading dose period and day 92 assessment. The statistical analysis plan was amended on Feb 10, 2016, to include additional analyses of the subgroup of participants with two SMN2 copies. Adverse events were assessed in all participants who received at least one dose of study treatment. The study is registered at ClinicalTrials.gov (NCT01839656). FINDINGS: Between May 3, 2013, and July 9, 2014, 20 symptomatic participants with infantile-onset spinal muscular atrophy (12 boys and 8 girls; median age at diagnosis 78 days [range 0-154]) were enrolled. Median time on study was 36·2 months (IQR 20·6-41·3). The primary endpoint of an incremental improvement in HINE-2 developmental motor milestones was reached by 12 (63%) of 19 evaluable participants. In the 13 participants with two SMN2 copies treated with 12 mg nusinersen, the HINE-2 motor milestone total score increased steadily from a baseline mean of 1·46 (SD 0·52) to 11·86 (6·18) at day 1135, representing a clinically significant change of 10·43 (6·05). At study closure (Aug 21, 2017), 15 (75%) of 20 participants were alive. 101 serious adverse events were reported in 16 (80%) of 20 participants; all five deaths (one in cohort 1 and four in cohort 2) were likely to be related to spinal muscular atrophy disease progression. INTERPRETATION: Our findings are consistent with other trials of nusinersen and show improved survival and attainment of motor milestones over 3 years in patients with infantile-onset spinal muscular atrophy, with a favourable safety profile. FUNDING: Biogen and Ionis Pharmaceuticals.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Lactente , Masculino , Atrofia Muscular Espinal/patologia , Oligonucleotídeos/administração & dosagem , Ontário , Resultado do Tratamento , Estados Unidos
19.
Hum Mol Genet ; 30(12): 1111-1130, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33864373

RESUMO

RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3'UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3'UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.


Assuntos
Desenvolvimento Muscular/genética , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/farmacologia , RNA/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/antagonistas & inibidores , RNA/toxicidade , RNA Mensageiro/genética , Regeneração/genética
20.
Nat Med ; 27(3): 526-535, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33707772

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal childhood premature aging disorder caused by a pre-messenger RNA (mRNA) splicing defect in the LMNA gene. We used combined in vitro screening and in vivo validation to systematically explore the effects of target sequence, backbone chemistry and mechanism of action to identify optimized antisense oligonucleotides (ASOs) for therapeutic use in HGPS. In a library of 198 ASOs, the most potent ASOs targeted the LMNA exon 12 junction and acted via non-RNase H-mediated mechanisms. Treatment with an optimized lead candidate resulted in extension of lifespan in a mouse model of HGPS. Progerin mRNA levels were robustly reduced in vivo, but the extent of progerin protein reduction differed between tissues, suggesting a long half-life and tissue-specific turnover of progerin in vivo. These results identify a novel therapeutic agent for HGPS and provide insight into the HGPS disease mechanism.


Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Progéria/tratamento farmacológico , Humanos , Lamina Tipo A/genética , Estudo de Prova de Conceito , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...