Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Pain ; 164(10): 2327-2342, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366595

RESUMO

ABSTRACT: Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.


Assuntos
Lesões por Esmagamento , Neuralgia , Traumatismos dos Nervos Periféricos , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Axônios/patologia , Lesões por Esmagamento/patologia , Compressão Nervosa , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões
2.
Brain Commun ; 5(2): fcad037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895957

RESUMO

The aims of our study were to use whole genome sequencing in a cross-sectional cohort of patients to identify new variants in genes implicated in neuropathic pain, to determine the prevalence of known pathogenic variants and to understand the relationship between pathogenic variants and clinical presentation. Patients with extreme neuropathic pain phenotypes (both sensory loss and gain) were recruited from secondary care clinics in the UK and underwent whole genome sequencing as part of the National Institute for Health and Care Research Bioresource Rare Diseases project. A multidisciplinary team assessed the pathogenicity of rare variants in genes previously known to cause neuropathic pain disorders and exploratory analysis of research candidate genes was completed. Association testing for genes carrying rare variants was completed using the gene-wise approach of the combined burden and variance-component test SKAT-O. Patch clamp analysis was performed on transfected HEK293T cells for research candidate variants of genes encoding ion channels. The results include the following: (i) Medically actionable variants were found in 12% of study participants (205 recruited), including known pathogenic variants: SCN9A(ENST00000409672.1): c.2544T>C, p.Ile848Thr that causes inherited erythromelalgia, and SPTLC1(ENST00000262554.2):c.340T>G, p.Cys133Tr variant that causes hereditary sensory neuropathy type-1. (ii) Clinically relevant variants were most common in voltage-gated sodium channels (Nav). (iii) SCN9A(ENST00000409672.1):c.554G>A, pArg185His variant was more common in non-freezing cold injury participants than controls and causes a gain of function of NaV1.7 after cooling (the environmental trigger for non-freezing cold injury). (iv) Rare variant association testing showed a significant difference in distribution for genes NGF, KIF1A, SCN8A, TRPM8, KIF1A, TRPA1 and the regulatory regions of genes SCN11A, FLVCR1, KIF1A and SCN9A between European participants with neuropathic pain and controls. (v) The TRPA1(ENST00000262209.4):c.515C>T, p.Ala172Val variant identified in participants with episodic somatic pain disorder demonstrated gain-of-channel function to agonist stimulation. Whole genome sequencing identified clinically relevant variants in over 10% of participants with extreme neuropathic pain phenotypes. The majority of these variants were found in ion channels. Combining genetic analysis with functional validation can lead to a better understanding as to how rare variants in ion channels lead to sensory neuron hyper-excitability, and how cold, as an environmental trigger, interacts with the gain-of-function NaV1.7 p.Arg185His variant. Our findings highlight the role of ion channel variants in the pathogenesis of extreme neuropathic pain disorders, likely mediated through changes in sensory neuron excitability and interaction with environmental triggers.

3.
J Neurol ; 270(2): 1076-1094, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36355188

RESUMO

Neuropathic pain is difficult to treat, and an understanding of the risk factors for its onset and resolution is warranted. This study aimed to develop and externally validate two clinical risk models to predict onset and resolution of chronic neuropathic pain. Participants of Generation Scotland: Scottish Family Health Study (GS; general Scottish population; n = 20,221) and Genetic of Diabetes Audit and Research in Tayside Scotland (GoDARTS; n = 5236) were sent a questionnaire on neuropathic pain and followed- -up 18 months later. Chronic neuropathic pain was defined using DN4 scores (≥ 3/7) and pain for 3 months or more. The models were developed in GS using logistic regression with backward elimination based on the Akaike information criterion. External validation was conducted in GoDARTS and assessed model discrimination (ROC and Precision-Recall curves), calibration and clinical utility (decision curve analysis [DCA]). Analysis revealed incidences of neuropathic pain onset (6.0% in GS [236/3903] and 10.7% in GoDARTS [61/571]) and resolution (42.6% in GS [230/540] and 23.7% in GoDARTS [56/236]). Psychosocial and lifestyle factors were included in both onset and resolved prediction models. In GoDARTS, these models showed adequate discrimination (ROC = 0.636 and 0.699), but there was evidence of miscalibration (Intercept = - 0.511 and - 0.424; slope = 0.623 and 0.999). The DCA indicated that the models would provide clinical benefit over a range of possible risk thresholds. To our knowledge, these are the first externally validated risk models for neuropathic pain. The findings are of interest to patients and clinicians in the community, who may take preventative or remedial measures.


Assuntos
Neuralgia , Humanos , Neuralgia/diagnóstico , Neuralgia/epidemiologia , Fatores de Risco , Escócia/epidemiologia , Modelos Logísticos
4.
Pain Rep ; 8(5): e1086, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38225956

RESUMO

Chronic pain (CP) is a common and often debilitating disorder that has major social and economic impacts. A subset of patients develop CP that significantly interferes with their activities of daily living and requires a high level of healthcare support. The challenge for treating physicians is in preventing the onset of refractory CP or effectively managing existing pain. To be able to do this, it is necessary to understand the risk factors, both genetic and environmental, for the onset of CP and response to treatment, as well as the pathogenesis of the disorder, which is highly heterogenous. However, studies of CP, particularly pain with neuropathic characteristics, have been hindered by a lack of consensus on phenotyping and data collection, making comparisons difficult. Furthermore, existing cohorts have suffered from small sample sizes meaning that analyses, especially genome-wide association studies, are insufficiently powered. The key to overcoming these issues is through the creation of large consortia such as DOLORisk and PAINSTORM and biorepositories, such as UK Biobank, where a common approach can be taken to CP phenotyping, which allows harmonisation across different cohorts and in turn increased study power. This review describes the approach that was used for studying neuropathic pain in DOLORisk and how this has informed current projects such as PAINSTORM, the rephenotyping of UK Biobank, and other endeavours. Moreover, an overview is provided of the outputs from these studies and the lessons learnt for future projects.

5.
J Peripher Nerv Syst ; 27(4): 325-329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962630

RESUMO

Small fiber neuropathy usually presents with gradual and progressive chronic length-dependent pain. Acute small fiber neuropathy is rarely reported. Three patients with acute onset neuropathic pain after Oxford-AstraZeneca ChAdOx1-S vaccination are described. Two patients were identified at the Oxford University NHS Foundation Trust, Oxford, UK and one patient in Red de Salud UC Christus, Santiago, Chile. All patients underwent a clinical assessment that included a detailed neurological examination, laboratory investigations, nerve conduction studies, thermal threshold testing, and skin biopsy for intra-epidermal nerve fiber density. Patients seen in Oxford underwent MRI of the brain and spinal cord. Cerebrospinal analysis was not performed. Neuropathic symptoms (burning pain, dysaesthesias) developed in the hands and feet within 2 weeks of vaccination. On clinical examination, there was pinprick and thermal hyposensitivity in the area of neuropathic pain. Laboratory investigation, nerve conduction tests, sympathetic skin responses, and MRI showed no relevant abnormalities. Thermal thresholds were abnormal and intra-epidermal nerve fiber density in the lower leg was reduced. In two cases symptoms persist after several months. Three cases of definite acute small fiber neuropathy after Oxford-AstraZeneca ChAdOx1-S vaccination are described. At follow up, neuropathic pain was present in two of the patients.


Assuntos
Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Neuropatia de Pequenas Fibras/induzido quimicamente , Neuropatia de Pequenas Fibras/diagnóstico , Neuropatia de Pequenas Fibras/patologia , Condução Nervosa/fisiologia , Neuralgia/induzido quimicamente , Neuralgia/patologia , Exame Neurológico , Pele/patologia , Vacinação/efeitos adversos
7.
BMC Med Inform Decis Mak ; 22(1): 144, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35644620

RESUMO

BACKGROUND: To improve the treatment of painful Diabetic Peripheral Neuropathy (DPN) and associated co-morbidities, a better understanding of the pathophysiology and risk factors for painful DPN is required. Using harmonised cohorts (N = 1230) we have built models that classify painful versus painless DPN using quality of life (EQ5D), lifestyle (smoking, alcohol consumption), demographics (age, gender), personality and psychology traits (anxiety, depression, personality traits), biochemical (HbA1c) and clinical variables (BMI, hospital stay and trauma at young age) as predictors. METHODS: The Random Forest, Adaptive Regression Splines and Naive Bayes machine learning models were trained for classifying painful/painless DPN. Their performance was estimated using cross-validation in large cross-sectional cohorts (N = 935) and externally validated in a large population-based cohort (N = 295). Variables were ranked for importance using model specific metrics and marginal effects of predictors were aggregated and assessed at the global level. Model selection was carried out using the Mathews Correlation Coefficient (MCC) and model performance was quantified in the validation set using MCC, the area under the precision/recall curve (AUPRC) and accuracy. RESULTS: Random Forest (MCC = 0.28, AUPRC = 0.76) and Adaptive Regression Splines (MCC = 0.29, AUPRC = 0.77) were the best performing models and showed the smallest reduction in performance between the training and validation dataset. EQ5D index, the 10-item personality dimensions, HbA1c, Depression and Anxiety t-scores, age and Body Mass Index were consistently amongst the most powerful predictors in classifying painful vs painless DPN. CONCLUSIONS: Machine learning models trained on large cross-sectional cohorts were able to accurately classify painful or painless DPN on an independent population-based dataset. Painful DPN is associated with more depression, anxiety and certain personality traits. It is also associated with poorer self-reported quality of life, younger age, poor glucose control and high Body Mass Index (BMI). The models showed good performance in realistic conditions in the presence of missing values and noisy datasets. These models can be used either in the clinical context to assist patient stratification based on the risk of painful DPN or return broad risk categories based on user input. Model's performance and calibration suggest that in both cases they could potentially improve diagnosis and outcomes by changing modifiable factors like BMI and HbA1c control and institute earlier preventive or supportive measures like psychological interventions.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Humanos , Teorema de Bayes , Estudos Transversais , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/epidemiologia , Hemoglobinas Glicadas , Aprendizado de Máquina , Dor , Qualidade de Vida
8.
Ann Neurol ; 91(4): 506-520, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150149

RESUMO

OBJECTIVE: Axonal excitability reflects ion channel function, and it is proposed that this may be a biomarker in painful (vs painless) polyneuropathy. Our objective was to investigate the relationship between axonal excitability parameters and chronic neuropathic pain in deeply phenotyped cohorts with diabetic or chemotherapy-induced distal symmetrical polyneuropathy. METHODS: Two hundred thirty-nine participants with diabetic polyneuropathy were recruited from sites in the UK and Denmark, and 39 participants who developed chemotherapy-induced polyneuropathy were recruited from Denmark. Participants were separated into those with probable or definite neuropathic pain and those without neuropathic pain. Axonal excitability of large myelinated fibers was measured with the threshold tracking technique. The stimulus site was the median nerve, and the recording sites were the index finger (sensory studies) and abductor pollicis brevis muscle (motor studies). RESULTS: Participants with painless and painful polyneuropathy were well matched across clinical variables. Sensory and motor axonal excitability measures, including recovery cycle, threshold electrotonus, strength-duration time constant, and current-threshold relationship, did not show differences between participants with painful and painless diabetic polyneuropathy, and there were only minor changes for chemotherapy-induced polyneuropathy. INTERPRETATION: Axonal excitability did not significantly differ between painful and painless diabetic or chemotherapy-induced polyneuropathy in a multicenter observational study. Threshold tracking assesses the excitability of myelinated axons; the majority of nociceptors are unmyelinated, and although there is some overlap of the "channelome" between these axonal populations, our results suggest that alternative measures such as microneurography are required to understand the relationship between sensory neuron excitability and neuropathic pain. ANN NEUROL 2022;91:506-520.


Assuntos
Antineoplásicos , Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Polineuropatias , Axônios , Humanos , Neuralgia/induzido quimicamente
10.
JAMA Netw Open ; 4(12): e2136560, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854908

RESUMO

Importance: Neuropathic pain (NP) has important clinical and socioeconomic consequences for individuals and society. Increasing evidence indicates that genetic factors make a significant contribution to NP, but genome-wide association studies (GWASs) are scant in this field and could help to elucidate susceptibility to NP. Objective: To identify genetic variants associated with NP susceptibility. Design, Setting, and Participants: This genetic association study included a meta-analysis of GWASs of NP using 3 independent cohorts: ie, Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS); Generation Scotland: Scottish Family Health Study (GS:SFHS); and the United Kingdom Biobank (UKBB). Data analysis was conducted from April 2018 to December 2019. Exposures: Individuals with NP (ie, case participants; those with pain of ≥3 months' duration and a Douleur Neuropathique en 4 Questions score ≥3) and individuals with no pain (ie, control participants) with or without diabetes from GoDARTS and GS:SFHS were identified using validated self-completed questionnaires. In the UKBB, self-reported prescribed medication and hospital records were used as a proxy to identify case participants (patients recorded as receiving specific anti-NP medicines) and control participants. Main Outcomes and Measures: GWAS was performed using linear mixed modeling. GWAS summary statistics were combined using fixed-effect meta-analysis. A total of 51 variants previously shown to be associated with NP were tested for replication. Results: This study included a total of 4512 case participants (2662 [58.9%] women; mean [SD] age, 61.7 [10.8] years) and 428 489 control participants (227 817 [53.2%] women; mean [SD] age, 62.3 [11.5] years) in the meta-analysis of 3 cohorts with European descent. The study found a genome-wide significant locus at chromosome 12q23.1, which mapped to SLC25A3 (rs369920026; odds ratio [OR] for having NP, 1.68; 95% CI, 1.40-2.02; P = 1.30 × 10-8), and a suggestive variant at 13q14.2 near CAB39L (rs7992766; OR, 1.09; 95% CI, 1.05-1.14; P = 1.22 × 10-7). These mitochondrial phosphate carriers and calcium binding genes are expressed in brain and dorsal root ganglia. Colocalization analyses using expression quantitative loci data found that the suggestive variant was associated with expression of CAB39L in the brain cerebellum (P = 1.01 × 10-14). None of the previously reported variants were replicated. Conclusions and Relevance: To our knowledge, this was the largest meta-analyses of GWAS to date. It found novel genetic variants associated with NP susceptibility. These findings provide new insights into the genetic architecture of NP and important information for further studies.


Assuntos
Cromossomos Humanos Par 12/genética , Predisposição Genética para Doença/genética , Neuralgia/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Loci Gênicos/genética , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Razão de Chances , Reino Unido , População Branca/genética
11.
J Neurosci ; 41(44): 9141-9162, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544832

RESUMO

The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6-/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6-/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.


Assuntos
Técnicas de Inativação de Genes/efeitos adversos , Genes Reporter , Canal de Potássio Kv1.6/genética , Óperon Lac , Neuralgia/metabolismo , Nociceptores/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Técnicas de Inativação de Genes/métodos , Integrases/metabolismo , Canal de Potássio Kv1.6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/patologia , Sinapses/metabolismo , Sinapses/patologia
12.
BMJ Open ; 11(5): e042887, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952538

RESUMO

PURPOSE: Neuropathic pain is a common disorder of the somatosensory system that affects 7%-10% of the general population. The disorder places a large social and economic burden on patients as well as healthcare services. However, not everyone with a relevant underlying aetiology develops corresponding pain. DOLORisk Dundee, a European Union-funded cohort, part of the multicentre DOLORisk consortium, was set up to increase current understanding of this variation in onset. In particular, the cohort will allow exploration of psychosocial, clinical and genetic predictors of neuropathic pain onset. PARTICIPANTS: DOLORisk Dundee has been constructed by rephenotyping two pre-existing Scottish population cohorts for neuropathic pain using a standardised 'core' study protocol: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) (n=5236) consisting of predominantly type 2 diabetics from the Tayside region, and Generation Scotland: Scottish Family Health Study (GS:SFHS; n=20 221). Rephenotyping was conducted in two phases: a baseline postal survey and a combined postal and online follow-up survey. DOLORisk Dundee consists of 9155 participants (GoDARTS=1915; GS:SFHS=7240) who responded to the baseline survey, of which 6338 (69.2%; GoDARTS=1046; GS:SFHS=5292) also responded to the follow-up survey (18 months later). FINDINGS TO DATE: At baseline, the proportion of those with chronic neuropathic pain (Douleur Neuropathique en 4 Questions questionnaire score ≥3, duration ≥3 months) was 30.5% in GoDARTS and 14.2% in Generation Scotland. Electronic record linkage enables large scale genetic association studies to be conducted and risk models have been constructed for neuropathic pain. FUTURE PLANS: The cohort is being maintained by an access committee, through which collaborations are encouraged. Details of how to do this will be available on the study website (http://dolorisk.eu/). Further follow-up surveys of the cohort are planned and funding applications are being prepared to this effect. This will be conducted in harmony with similar pain rephenotyping of UK Biobank.


Assuntos
Neuralgia , Estudos de Coortes , Estudos de Associação Genética , Humanos , Estudos Longitudinais , Neuralgia/etiologia , Escócia/epidemiologia
13.
Diabetologia ; 64(4): 923-931, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483760

RESUMO

AIMS/HYPOTHESIS: Distal diabetic sensorimotor polyneuropathy (DSP) is a common complication of diabetes with many patients showing a reduction of intraepidermal nerve fibre density (IENFD) from skin biopsy, a validated and sensitive diagnostic tool for the assessment of DSP. Axonal swelling ratio is a morphological quantification altered in DSP. It is, however, unclear if axonal swellings are related to diabetes or DSP. The aim of this study was to investigate how axonal swellings in cutaneous nerve fibres are related to type 2 diabetes mellitus, DSP and neuropathic pain in a well-defined cohort of patients diagnosed with type 2 diabetes. METHODS: A total of 249 participants, from the Pain in Neuropathy Study (UK) and the International Diabetic Neuropathy Consortium (Denmark), underwent a structured neurological examination, nerve conduction studies, quantitative sensory testing and skin biopsy. The study included four groups: healthy control study participants without diabetes (n = 45); participants with type 2 diabetes without DSP (DSP-; n = 31); and participants with evidence of DSP (DSP+; n = 173); the last were further separated into painless DSP+ (n = 74) and painful DSP+ (n = 99). Axonal swellings were defined as enlargements on epidermal-penetrating fibres exceeding 1.5 µm in diameter. Axonal swelling ratio is calculated by dividing the number of axonal swellings by the number of intraepidermal nerve fibres. RESULTS: Median (IQR) IENFD (fibres/mm) was: 6.7 (5.2-9.2) for healthy control participants; 6.2 (4.4-7.3) for DSP-; 1.3 (0.5-2.2) for painless DSP+; and 0.84 (0.4-1.6) for painful DSP+. Swelling ratios were calculated for all participants and those with IENFD > 1.0 fibre/mm. When only those participants with IENFD > 1.0 fibre/mm were included, the axonal swelling ratio was higher in participants with type 2 diabetes when compared with healthy control participants (p < 0.001); however, there was no difference between DSP- and painless DSP+ participants, or between painless DSP+ and painful DSP+ participants. The axonal swelling ratio correlated weakly with HbA1c (r = 0.16, p = 0.04), but did not correlate with the Toronto Clinical Scoring System (surrogate measure of DSP severity), BMI or type 2 diabetes duration. CONCLUSIONS/INTERPRETATION: In individuals with type 2 diabetes where IENFD is >1.0 fibre/mm, axonal swelling ratio is related to type 2 diabetes but is not related to DSP or painful DSP. Axonal swellings may be an early marker of sensory nerve injury in type 2 diabetes.


Assuntos
Axônios/patologia , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/patologia , Pele/inervação , Idoso , Biópsia , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Medição da Dor , Valor Preditivo dos Testes , Estudos Retrospectivos
14.
Pain ; 162(4): 1211-1220, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044393

RESUMO

ABSTRACT: It currently remains unclear why some patients with entrapment neuropathies develop neuropathic pain (neuP), whereas others have non-neuP, presumably of nociceptive character. Studying patients with carpal tunnel syndrome (CTS), this cross-sectional cohort study investigated changes in somatosensory structure and function as well as emotional well-being specific to the presence and severity of neuP. Patients with CTS (n = 108) were subgrouped by the DN4 questionnaire into those without and with neuP. The latter group was further subdivided into mild and moderate/severe neuP using a pain visual analogue scale. N = 32 participants served as healthy controls. All participants underwent a clinical examination, quantitative sensory testing, electrodiagnostic testing (EDT), and skin biopsy to determine the structural integrity of dermal and intraepidermal nerve fibres. Patients also completed questionnaires evaluating symptom severity and functional deficits, pain distribution, sleep quality, and emotional well-being. The overall prevalence of neuP in patients with CTS was 80%, of which 63% had mild neuP. Symptom severity and functional deficits as well as somatosensory dysfunction was more pronounced with the presence and increasing severity of neuP. No difference was identified among patient groups for EDT and nerve fibre integrity on biopsies. The severity of neuP was accompanied by more pronounced deficits in emotional well-being and sleep quality. Intriguingly, extraterritorial spread of symptoms was more prevalent in patients with moderate/severe neuP, indicating the presence of central mechanisms. NeuP is common in patients with CTS, and its severity is related to the extent of somatosensory dysfunction and a compromise of emotional well-being.


Assuntos
Síndrome do Túnel Carpal , Síndromes de Compressão Nervosa , Neuralgia , Estudos Transversais , Humanos , Fenótipo
15.
Brain ; 143(7): 2009-2026, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32651949

RESUMO

We only have a rudimentary understanding of the molecular and cellular determinants of nerve regeneration and neuropathic pain in humans. This cohort study uses the most common entrapment neuropathy (carpal tunnel syndrome) as a human model system to prospectively evaluate the cellular and molecular correlates of neural regeneration and its relationship with clinical recovery. In 60 patients undergoing carpal tunnel surgery [36 female, mean age 62.5 (standard deviation 12.2) years], we used quantitative sensory testing and nerve conduction studies to evaluate the function of large and small fibres before and 6 months after surgery. Clinical recovery was assessed with the global rating of change scale and Boston Carpal Tunnel Questionnaire. Twenty healthy participants provided normative data [14 female, mean age 58.0 (standard deviation 12.9) years]. At 6 months post-surgery, we noted significant recovery of median nerve neurophysiological parameters (P < 0.0001) and improvements in quantitative sensory testing measures of both small and large nerve fibre function (P < 0.002). Serial biopsies revealed a partial recovery of intraepidermal nerve fibre density [fibres/mm epidermis pre: 4.20 (2.83), post: 5.35 (3.34), P = 0.001], whose extent correlated with symptom improvement (r = 0.389, P = 0.001). In myelinated afferents, nodal length increased postoperatively [pre: 2.03 (0.82), post: 3.03 (1.23), P < 0.0001] suggesting that this is an adaptive phenomenon. Transcriptional profiling of the skin revealed 31 differentially expressed genes following decompression, with ADCYAP1 (encoding pituitary adenylate cyclase activating peptide, PACAP) being the most strongly upregulated (log2 fold-change 1.87, P = 0.0001) and its expression was associated with recovery of intraepidermal nerve fibres. We found that human induced pluripotent stem cell-derived sensory neurons expressed the receptor for PACAP and that this peptide could significantly enhance axon outgrowth in a dose-dependent manner in vitro [neurite length PACAP 1065.0 µm (285.5), vehicle 570.9 µm (181.8), P = 0.003]. In conclusion, carpal tunnel release is associated with significant cutaneous reinnervation, which correlates with the degree of functional improvement and is associated with a transcriptional programme relating to morphogenesis and inflammatory processes. The most highly dysregulated gene ADCYAP1 (encoding PACAP) was associated with reinnervation and, given that this peptide signals through G-protein coupled receptors, this signalling pathway provides an interesting therapeutic target for human sensory nerve regeneration.


Assuntos
Regeneração Nervosa/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células Receptoras Sensoriais/metabolismo , Adulto , Idoso , Síndrome do Túnel Carpal , Estudos de Coortes , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade
16.
J Proteome Res ; 19(4): 1592-1619, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32050077

RESUMO

Pain and emotional distress have a reciprocal relation. The amygdala has been implicated in emotional processing. The central nucleus of the amygdala (CeA) receives nociceptive information from the dorsal horn of spinal cord and is responsible for the central plasticity in chronic pain. Neuropathic pain is a type of severe chronic pain and can be strongly influenced by emotional components. Plastic changes in the CeA may play a key role in the development or maintenance or both of neuropathic pain. We studied the expression levels of proteins in the CeA of spinal nerve transection (SNT) model rats. Total tissue lysate proteins were separated by two-dimensional-gel electrophoresis (2D-PAGE). Gels from different time points were compared using Progenesis SameSpot software, and the spots with Fold Change greater than 2 were excised for protein identification by mass spectrometry. We identified more than 50 cytosolic proteins as significantly altered in their expression levels in the CeA of SNT rats, and most of these changes have been validated at mRNA levels by qRT-PCR. We also identified more than 40 membrane proteins as notably up- or down-regulated in the CeA of SNT model rats relative to a control using stable isotope dimethyl labeling nano-LC-MS/MS based proteomics and found that one such protein, doublecortin (DCX), a microtubule-associated protein expressed by neuronal precursor cells during development, is specifically localized in the membrane fraction without changes in total amount of the protein. Immunohistochemistry showed that doublecortin is expressed in processes in the CeA of rats 7 and 21 days after SNT surgery, suggesting that doublecortin is one of the proteins that may contribute to the plastic changes, namely, redevelopment or rewiring of neural networks, in the CeA in the neuropathic pain model. These dysregulated proteins may play roles in reciprocal relationships between pain and psychological distress in the amygdala and contribute to central sensitization. Data are available via ProteomeXchange with identifier PXD017473.


Assuntos
Núcleo Central da Amígdala , Neuralgia , Animais , Proteína Duplacortina , Proteômica , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
17.
J Neurol Neurosurg Psychiatry ; 91(2): 177-188, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224548

RESUMO

The immune system has long been recognised important in pain regulation through inflammatory cytokine modulation of peripheral nociceptive fibres. Recently, cytokine interactions in brain and spinal cord glia as well as dorsal root ganglia satellite glia have been identified important- in pain modulation. The result of these interactions is central and peripheral sensitisation of nociceptive processing. Additionally, new insights and the term 'autoimmune pain' have emerged through discovery of specific IgGs targeting the extracellular domains of antigens at nodal and synaptic structures, causing pain directly without inflammation by enhancing neuronal excitability. Other discovered IgGs heighten pain indirectly by T-cell-mediated inflammation or destruction of targets within the nociceptive pathways. Notable identified IgGs in pain include those against the components of channels and receptors involved in inhibitory or excitatory somatosensory synapses or their pathways: nodal and paranodal proteins (LGI1, CASPR1, CASPR2); glutamate detection (AMPA-R); GABA regulation and release (GAD65, amphiphysin); glycine receptors (GLY-R); water channels (AQP4). These disorders have other neurological manifestations of central/peripheral hyperexcitabability including seizures, encephalopathy, myoclonus, tremor and spasticity, with immunotherapy responsiveness. Other pain disorders, like complex regional pain disorder, have been associated with IgGs against ß2-adrenergic receptor, muscarinic-2 receptors, AChR-nicotinic ganglionic α-3 receptors and calcium channels (N and P/Q types), but less consistently with immune treatment response. Here, we outline how the immune system contributes to development and regulation of pain, review specific IgG-mediated pain disorders and summarise recent development in therapy approaches. Biological agents to treat pain (anti-calcitonin gene-related peptide and anti-nerve growth factor) are also discussed.


Assuntos
Sistema Imunitário/imunologia , Imunoglobulina G/imunologia , Imunoterapia/métodos , Dor/imunologia , Transmissão Sináptica/imunologia , Animais , Humanos , Dor/tratamento farmacológico
18.
Glia ; 67(10): 1990-2000, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31339187

RESUMO

Membrane metallo-endopeptidase (MME), also known as neprilysin (NEP), has been of interest for its role in neurodegeneration and pain due to its ability to degrade ß-amyloid and substance-P, respectively. In addition to its role in the central nervous system, MME has been reported to be expressed in the peripheral system, specifically in the inner and outer border of myelinating fibers, in the Schmidt-Lantermann cleft and in the paranodes. Recently, mutations of this gene have been associated with Charcot-Marie-Tooth Type 2 (CMT2). Peripheral nerve morphometry in mice lacking MME previously showed minor abnormalities in aged animals in comparison to CMT2 patients. We found that MME expression was dysregulated after nerve injury in a Neuregulin-1 dependent fashion. We therefore explored the hypothesis that MME may have a role in remyelination. In the naïve state in adulthood we did not find any impairment in myelination in MME KO mice. After nerve injury the morphological outcome in MME KO mice was indistinguishable from WT littermates in terms of axon regeneration and remyelination. We did not find any difference in functional motor recovery. There was a significant difference in sensory function, with MME KO mice starting to recover response to mechanical stimuli earlier than WT. The epidermal reinnnervation, however, was unchanged and this altered sensitivity may relate to its known function in cleaving the peptide substance-P, known to sensitise nociceptors. In conclusion, although MME expression is dysregulated after nerve injury in a NRG1-dependent manner this gene is dispensable for axon regeneration and remyelination after injury.


Assuntos
Bainha de Mielina/enzimologia , Neprilisina/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Bainha de Mielina/patologia , Neprilisina/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Nociceptividade/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/patologia
19.
J Cell Biol ; 218(7): 2370-2387, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201266

RESUMO

RalA and RalB are small GTPases that are involved in cell migration and membrane dynamics. We used transgenic mice in which one or both GTPases were genetically ablated to investigate the role of RalGTPases in the Schwann cell (SC) response to nerve injury and repair. RalGTPases were dispensable for SC function in the naive uninjured state. Ablation of both RalA and RalB (but not individually) in SCs resulted in impaired axon remyelination and target reinnervation following nerve injury, which resulted in slowed recovery of motor function. Ral GTPases were localized to the leading lamellipodia in SCs and were required for the formation and extension of both axial and radial processes of SCs. These effects were dependent on interaction with the exocyst complex and impacted on the rate of SC migration and myelination. Our results show that RalGTPases are required for efficient nerve repair by regulating SC process formation, migration, and myelination, therefore uncovering a novel role for these GTPases.


Assuntos
Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos/genética , Proteínas ral de Ligação ao GTP/genética , Animais , Axônios/metabolismo , Movimento Celular/genética , Humanos , Camundongos , Camundongos Transgênicos , Bainha de Mielina/genética , Traumatismos dos Nervos Periféricos/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
20.
J Invest Dermatol ; 139(9): 1936-1945.e3, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30974165

RESUMO

Increasing evidence suggests that nerve fibers responding to noxious stimuli (nociceptors) modulate immunity in a variety of tissues, including the skin. Yet, the role of nociceptors in regulating sterile cutaneous inflammation remains unexplored. To address this question, we have developed a detailed description of the sterile inflammation caused by overexposure to UVB irradiation (i.e., sunburn) in the mouse plantar skin. Using this model, we observed that chemical depletion of nociceptor terminals did not alter the early phase of the inflammatory response to UVB, but it caused a significant increase in the number of dendritic cells and αß+ T cells as well as enhanced extravasation during the later stages of inflammation. Finally, we showed that such regulation was driven by the nociceptive neuropeptide calcitonin gene-related peptide. In conclusion, we propose that nociceptors not only play a crucial role in inflammation through avoidance reflexes and behaviors, but can also regulate sterile cutaneous immunity in vivo.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dermatite/imunologia , Nociceptores/imunologia , Pele/efeitos da radiação , Queimadura Solar/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Dendríticas/imunologia , Modelos Animais de Doenças , Diterpenos/toxicidade , Feminino , Humanos , Camundongos , Camundongos Knockout , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/imunologia , Fibras Nervosas/metabolismo , Neurotoxinas/toxicidade , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Pele/citologia , Pele/imunologia , Pele/inervação , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...