Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(2): 103898, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38188538

RESUMO

Seahorses, part of the small marine teleost fish family Syngnathidae, are increasingly under threat due to habitat degradation and overfishing. Notably used in traditional Chinese medicine, these fish have demonstrated significant pharmacological and cosmetic properties. In Morocco, however, seahorses are minimally exploited. This study aims to explore the biodiversity of Moroccan seahorses, focusing on identifying species from the Atlantic and Mediterranean coasts both morphologically and molecularly, and evaluating their antioxidant activity. The research involved collecting 62 dried seahorses from local fishermen. These specimens were subjected to detailed morphological and molecular identification through the DNA barcoding method, concentrating on the mitochondrial marker Cytochrome Oxidase I (COI) gene. Following DNA extraction and amplification, the sequences were analyzed for species identification and phylogenetic relationships. Additionally, the antioxidant activities of the seahorses were quantified using assays such as ABTS, reducing power, phosphomolybdenum, and ß-carotene-linoleic acid. The combined morphological and molecular analyses consistently identified all specimens as Hippocampus hippocampus, and phylogenetic trees suggested a close relation with European and Turkish counterparts. Furthermore, the antioxidant assays revealed significant activity, with the ABTS assay showing an IC50 of 14.571 mg/mL ± 0.334, and the ß-carotene-linoleic acid assay showing an IC50 of 1.273 mg/mL ± 0.166. The reducing power and phosphomolybdenum assays recorded EC50 values of 1.868 mg/mL ± 0.033 and 1.156 mg/mL ± 0.112, respectively. These results confirm the high antioxidant potential of Moroccan seahorses, suggesting their therapeutic value and necessitating measures for their biodiversity preservation at a national level.

2.
Leuk Res Rep ; 20: 100392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035181

RESUMO

Background: The nonrandom recurrence of chromosomal abnormalities in multiple myeloma (MM) raises the possibility that they play a role in the pathophysiology and development of the disease. Fluorescence in situ hybridization (FISH) can identify a high frequency of certain abnormalities without the need for the proliferative and infiltrative index of malignant plasma cells required for conventional cytogenetic analysis. In this study, we describe the association between clinico-biological characteristics and chromosomal abnormalities in 30 Moroccan patients. Methods: The analysis of cytogenetic data, conventional and molecular, of 30 cases of MM, obtained from our previously cytogenetic study, and correlation of the results with the clinico-biological data of these patients. Results: The bone marrow of 5 of 21 patients (23 %) contained a chromosomally abnormal clone, and all karyotypes were complicated (>3 abnormalities). Interphase FISH (iFISH) has detected aberrations in 14 out of 30 (46 %) of the total cases. The proportion of plasma cells in the bone marrow was higher in patients with chromosomal abnormalities (median 29 %) (p = 0.01917) than in patients without abnormalities (median 11 %). Although there was a difference in the median ß-2 microglobulin percentage (13.8 % versus 6.8 %), it was not statistically significant (p = 0.6818). We also, categorized patients into those with a complex clone and those with a sole abnormality. Patients with high bone marrow plasma cell rate (median 45 %) and high rate of ß-2 microglobulin (median 24 %) showed a complex karyotype and a higher iFISH detection rate than those with plasma cells count for (median 20 %) and ß-2 microglobulin count for (median 11 %) but without statistical significance (p = 0.4338 et p = 0.45 respectively). Furthermore, patients with aberrations had significantly shorter overall survival (100 % for 800 days versus 150 days only). Conclusion: Our research has shown that different subgroups of patients with MM can be classified based on the underlying genetic abnormalities. Chromosomal abnormalities (CA) may give the plasma cell a proliferative advantage, increasing the virulence of the disease and affecting overall survival.

3.
Microbiol Insights ; 16: 11786361231162720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994236

RESUMO

Evidence indicates that short-chain fatty acids (SCFAs) generated from the gut microbiota play crucial roles in host metabolism. They contribute to metabolic regulation and energy acquisition of the host by influencing the development of metabolic disorders. This review aims to synthesize recent advances from the literature to investigate the implication of SCFAs in the modulation of obesity and diabetes pathologies. For a better understanding of the relationships between SCFAs and host metabolism, we need to answer some questions: What is the biochemistry of SCFAs, and how they are generated by gut microbiota? What are the bacteria producing of SCFAs and from which routes? How SCFAs are absorbed and transported in the gut by different mechanisms and receptors? How SCFAs involved in obesity and diabetes pathologies?

4.
Bioinform Biol Insights ; 16: 11779322221115665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958296

RESUMO

Inflammatory bowel diseases are caused by an abnormal reaction of the immune system, which becomes hyperactive because the mechanisms responsible for regulating it get out of control. For an effective immune response, many proinflammatory cytokines are secreted, particularly interleukin-6 (IL-6) keystone cytokine inflammation. Many synthetic and natural compounds targeting IL-6 have been studied. The genus Satureja of the Lamiaceae family is generally known for its many virtues, in particular anti-inflammatory properties. However, the mechanism of action is unclear. This study aims to predict the impact of characterized bioactive molecules of Moroccan Satureja nepeta in the potential control of inflammatory response mediated by IL-6 cytokine. A list of 9 previously characterized natural compounds of S. nepeta was compiled, and a list of 6 potential protein targets involved in intestinal inflammation was made. The 2 lists of natural compound-target proteins were analyzed by the STITCH software (http://stitch.embl.de/) to develop protein-compound and protein-protein interaction networks (PPINs). An ontological enrichment (GO) analysis was performed by the Clue GO plugin to evaluate the PPIN generated by STITCH; finally, the molecular docking to predict the mode underlying the anti-inflammatory effects. STITCH results revealed direct and indirect interactions of S. nepeta chemical compounds with a key protein target IL-6. The array results by ClueGO showed that most compounds involved in the regulation of several biological processes related to IL-6 such as inflammation apoptosis, cell differentiation, and metabolic regulation. The targets directly related to IL-6 have been used for molecular docking. Quercetin, catechin, and gallic acid have a strong affinity with the IL-6 receptor (respectively -7.1; -6.1; -5.3). This study strongly suggests that the bioactive compounds of S. nepeta could constitute a new therapeutic alternative in the treatment of diseases related to IL-6. However, to validate the results obtained in this work, it is necessary to explore the mechanism of action of potential bioactive molecules by experimentation.

5.
Bioinform Biol Insights ; 16: 11779322221115545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958298

RESUMO

Multiple myeloma (MM) is a hematological malignancy in which monoclonal plasma cells multiply in the bone marrow and monoclonal immunoglobulins are overproduced in older people. Several molecular and cytogenetic advances allow scientists to identify several genetic and chromosomal abnormalities that cause the disease. The comprehension of the pathophysiology of MM requires an understanding of the characteristics of malignant clones and the changes in the bone marrow microenvironment. This study aims to identify the central genes and to determine the key signaling pathways in MM by in silico approaches. A list of 114 differentially expressed genes (DEGs) is important in the prognosis of MM. The DEGs are collected from scientific publications and databases (https://www.ncbi.nlm.nih.gov/). These data are analyzed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software (https://string-db.org/) through the construction of protein-protein interaction (PPI) networks and enrichment analysis of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, by CytoHubba, AutoAnnotate, Bingo Apps plugins in Cytoscape software (https://cytoscape.org/) and by DAVID database (https://david.ncifcrf.gov/). The analysis of the results shows that there are 7 core genes, including TP53; MYC; CDND1; IL6; UBA52; EZH2, and MDM2. These top genes appear to play a role in the promotion and progression of MM. According to functional enrichment analysis, these genes are mainly involved in the following signaling pathways: Epstein-Barr virus infection, microRNA pathway, PI3K-Akt signaling pathway, and p53 signaling pathway. Several crucial genes, including TP53, MYC, CDND1, IL6, UBA52, EZH2, and MDM2, are significantly correlated with MM, which may exert their role in the onset and evolution of MM.

6.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014042

RESUMO

The Moroccan coast is characterized by a diversity of climate, reflecting a great richness and diversity of fauna and flora. By this, marine microbiota plays a fundamental role in many biogeochemical processes, environmental modifications, and responses to temperature changes. To date, no exploration by high-throughput techniques has been carried out on the characterization of the Moroccan marine microbiota. The objective of this work is to study the diversity and metabolic functions of MMM from the Moroccan coast (Atlantic and Mediterranean) according to the water source (WS) and the type of climate (CT) using the approach high-throughput sequencing of the 16SrRNA gene. Four water samples of twelve sampling sites from the four major climates along the Moroccan coastline were collected, and prokaryotic DNA was extracted. V4 region of 16S rRNA gene was amplified, and the product PCR was sequenced by Illumina Miseq. The ß-diversity and α-diversity indices were determined to assess the species richness and evenness. The obtained results were analyzed by Mothur and R software. A total of twenty-eight Bacterial phyla and twelve Archaea were identified from the samples. Proteobacteria, Bacteroidetes, and Cyanobacteria are the three key bacterial phyla, and the Archaeal phyla identified are: Euryarchaeota, Nanoarchaeaeota, Crenarchaeota, Hydrothermarchaeota, Asgardaeota, Diapherotrites, and Thaumarchaeota in the Moroccan coastline and the four climates studied. The whole phylum are involved in marine biogeochemical cycles, and through their functions they participate in the homeostasis of the ocean in the presence of pollutants or stressful biotic and abiotic factors. In conclusion, the obtained results reported sufficient deepness of sequencing to cover the majority of Archaeal and Bacterial genera in each site. We noticed a strong difference in microbiota diversity, abundance, and taxonomy inter- and intra-climates and water source without significant differences in function. To better explore this diversity, other omic approaches can be applied such as the metagenomic shotgun, and transcriptomic approaches allowing a better characterization of the Moroccan marine microbiota and to understand the mechanisms of its adaptation and its impacts in/on the ecosystem.

7.
Bioinform Biol Insights ; 16: 11779322211063993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023908

RESUMO

In the marine environment, coastal nutrient pollution and algal blooms are increasing in many coral reefs and surface waters around the world, leading to higher concentrations of dissolved organic carbon (DOC), nitrogen (N), phosphate (P), and sulfur (S) compounds. The adaptation of the marine microbiota to this stress involves evolutionary processes through mutations that can provide selective phenotypes. The aim of this in silico analysis is to elucidate the potential candidate hub proteins, biological processes, and key metabolic pathways involved in the pathogenicity of bacterioplankton during excess of nutrients. The analysis was carried out on the model organism Escherichia coli K-12, by adopting an analysis pipeline consisting of a set of packages from the Cystoscape platform. The results obtained show that the metabolism of carbon and sugars generally are the 2 driving mechanisms for the expression of virulence factors.

8.
Microbiol Insights ; 14: 1178636121999673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33795937

RESUMO

Microorganisms such as viruses, bacteria, and protozoa are the cause of many waterborne human infections. These microbes are either naturally present in aquatic environments or transferred within them by fecal sources. They remain in these environments for varying lengths of time before contaminating a new host. With the emergence of the COVID-19 pandemic, some studies have reported the presence of viral nucleic acids in stool samples from COVID-19 patients, suggesting the possibility of fecal-oral transmission. The SARS-CoV-2 RNA was thereby detected in the wastewater of symptomatic and asymptomatic people with a risk to human and environmental health. In this work, we try to discuss the different potential sources of this contamination, the forms of persistence in the environment, the techniques of partial elimination, and the possibility of creating new reservoirs.

9.
Bioinform Biol Insights ; 15: 11779322211009199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888980

RESUMO

The emerging pathogen SARS-CoV2 causing coronavirus disease 2019 (COVID-19) is a global public health challenge. To the present day, COVID-19 had affected more than 40 million people worldwide. The exploration and the development of new bioactive compounds with cost-effective and specific anti-COVID 19 therapeutic power is the prime focus of the current medical research. Thus, the exploitation of the molecular docking technique has become essential in the discovery and development of new drugs, to better understand drug-target interactions in their original environment. This work consists of studying the binding affinity and the type of interactions, through molecular docking, between 54 compounds from Moroccan medicinal plants, dextran sulfate and heparin (compounds not derived from medicinal plants), and 3CLpro-SARS-CoV-2, ACE2, and the post fusion core of 2019-nCoV S2 subunit. The PDB files of the target proteins and prepared herbal compounds (ligands) were subjected for docking to AutoDock Vina using UCSF Chimera, which provides a list of potential complexes based on the criteria of form complementarity of the natural compound with their binding affinities. The results of molecular docking revealed that Taxol, Rutin, Genkwanine, and Luteolin-glucoside have a high affinity with ACE2 and 3CLpro. Therefore, these natural compounds can have 2 effects at once, inhibiting 3CLpro and preventing recognition between the virus and ACE2. These compounds may have a potential therapeutic effect against SARS-CoV2, and therefore natural anti-COVID-19 compounds.

10.
Bioinform Biol Insights ; 14: 1177932220906168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425510

RESUMO

Nowadays, the integration of biological data is a major challenge for bioinformatics. Many studies have examined gene expression in the epithelial tissue in the intestines of infants born to term and breastfed, generating a large amount of data. The integration of these data is important to understand the biological processes involved during bacterial colonization of the newborns intestine, particularly through breast milk. This work aims to exploit the bioinformatics approaches, to provide a new representation and interpretation of the interactions between differentially expressed genes in the host intestine induced by the microbiota.

11.
J Complement Integr Med ; 15(4)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29794251

RESUMO

Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.


Assuntos
Antioxidantes/química , Lamiaceae/química , Óleos Voláteis/química , Fenóis/química , Óleos de Plantas/química , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas
12.
J Hum Genet ; 48(4): 199-203, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12730724

RESUMO

Familial hypercholesterolemia (FH) is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor (LDLR) gene, although it can also be due to alterations in the gene encoding apolipoprotein B (familial defective apoB or FDB) or in other unidentified genes. In Morocco, the molecular basis of FH is unknown. To obtain information on this issue, 27 patients with FH from eight unrelated families were analyzed by screening the LDLR (PCR-SSCP and Southern blot) and apoB genes (PCR and restriction enzyme digestion analysis). None of the patients carried either the R3500Q or the R3531C mutation in the apoB gene. By contrast, seven mutations in the LDLR gene were identified, including five missense mutations on exons 4, 6, 8, and 14 (C113R, G266C, A370T, P664L, C690S) and two large deletions (FH Morocco-1 and FH Morocco-2). The two major rearrangements and the missense mutation G266C are novel mutations and could well be causative of FH in the Moroccan population. This study has yielded preliminary information on the mutation spectrum of the LDLR gene among patients with FH in Morocco.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Mutação/genética , Receptores de LDL/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Feminino , Humanos , Hiperlipoproteinemia Tipo II/epidemiologia , Masculino , Pessoa de Meia-Idade , Marrocos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...