Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 23(1): 145-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770729

RESUMO

Multi-cellular biomimetic models often comprise heterogenic geometries. Therefore, quantification of their mechanical properties-which is crucial for various biomedical applications-is a challenge. Due to its simplicity, linear fitting is traditionally used in analyzing force-displacement data of parallel compression measurements of multi-cellular clusters, such as tumor spheroids. However, the linear assumption would be artificial when the contact geometry is not planar. We propose here the integrated elasticity (IE) regression, which is based on extrapolation of established elastic theories for well-defined geometries, and is free, extremely simple to apply, and optimal for analyzing coarsely concave multi-cellular clusters. We studied here the quality of the data analysis in force measurements of tumor spheroids comprising different types of melanoma cells, using either the IE or the traditional linear regressions. The IE regression maintained excellent precision also when the contact geometry deviated from planarity (as shown by our image analysis). While the quality of the linear fittings was relatively satisfying, these predicted smaller elastic moduli as compared to the IE regression. This was in accordance with previous studies, in which the elastic moduli predicted by linear fits were smaller compared to those obtained by well-established methods. This suggests that linear regressions underestimate the elastic constants of bio-samples even in cases where the fitting precision seems satisfying, and highlights the need in alternative methods as the IE scheme. For comparison between different types of spheroids we further recommend to increase the soundness by regarding relative moduli, using universal reference samples.


Assuntos
Fenômenos Mecânicos , Neoplasias , Humanos , Elasticidade , Módulo de Elasticidade
2.
Adv Mater ; 36(13): e2311109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127403

RESUMO

Glioblastoma multiforme (GBM) is notoriously resistant to immunotherapy due to its intricate immunosuppressive tumor microenvironment (TME). Dysregulated cholesterol metabolism is implicated in the TME and promotes tumor progression. Here, it is found that cholesterol levels in GBM tissues are abnormally high, and glioma-supportive macrophages (GSMs), an essential "cholesterol factory", demonstrate aberrantly hyperactive cholesterol metabolism and efflux, providing cholesterol to fuel GBM growth and induce CD8+ T cells exhaustion. Bioinformatics analysis confirms that high 7-dehydrocholesterol reductase (DHCR7) level in GBM tissues associates with increased cholesterol biosynthesis, suppressed tumoricidal immune response, and poor patient survival, and DHCR7 expression level is significantly elevated in GSMs. Therefore, an intracavitary sprayable nanoregulator (NR)-encased hydrogel system to modulate cholesterol metabolism of GSMs is reported. The degradable NR-mediated ablation of DHCR7 in GSMs effectively suppresses cholesterol supply and activates T-cell immunity. Moreover, the combination of Toll-like receptor 7/8 (TLR7/8) agonists significantly promotes GSM polarization to antitumor phenotypes and ameliorates the TME. Treatment with the hybrid system exhibits superior antitumor effects in the orthotopic GBM model and postsurgical recurrence model. Altogether, the findings unravel the role of GSMs DHCR7/cholesterol signaling in the regulation of TME, presenting a potential treatment strategy that warrants further clinical trials.


Assuntos
Neoplasias Encefálicas , Dissacarídeos , Glioblastoma , Glioma , Glucuronatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos/metabolismo , Hidrogéis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/patologia , Macrófagos/metabolismo , Imunoterapia , Colesterol , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
3.
Commun Biol ; 6(1): 1157, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957280

RESUMO

Optimal clinical outcomes in cancer treatments could be achieved through the development of reliable, precise ex vivo tumor models that function as drug screening platforms for patient-targeted therapies. Microfluidic tumor-on-chip technology is emerging as a preferred tool since it enables the complex set-ups and recapitulation of the physiologically relevant physical microenvironment of tumors. In order to overcome the common hindrances encountered while using this technology, a fully 3D-printed device was developed that sustains patient-derived multicellular spheroids long enough to conduct multiple drug screening tests. This tool is both cost effective and possesses four necessary characteristics of effective microfluidic devices: transparency, biocompatibility, versatility, and sample accessibility. Compelling correlations which demonstrate a clinical proof of concept were found after testing and comparing different chemotherapies on tumor spheroids, derived from ten patients, to their clinical outcomes. This platform offers a potential solution for personalized medicine by functioning as a predictive drug-performance tool.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
4.
ACS Appl Mater Interfaces ; 15(43): 50330-50343, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861446

RESUMO

Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 µm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.


Assuntos
Nanocápsulas , Nanocápsulas/química , Verde de Indocianina/farmacologia , Verde de Indocianina/química , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Polímeros/química , Eritromicina/farmacologia
5.
Sci Transl Med ; 15(699): eabo0684, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285403

RESUMO

Epidermal growth factor receptor (EGFR) inhibitors are used to treat many advanced-stage epithelial cancers but induce severe skin toxicities in most treated patients. These side effects lead to a deterioration in the quality of life of the patients and compromise the anticancer treatment. Current treatment strategies for these skin toxicities focus on symptom reduction rather than preventing the initial trigger that causes the toxicity. In this study, we developed a compound and method for treating "on-target" skin toxicity by blocking the drug at the site of toxicity without reducing the systemic dose reaching the tumor. We first screened for small molecules that effectively blocked the binding of anti-EGFR monoclonal antibodies to EGFR and identified a potential candidate, SDT-011. In silico docking predicted that SDT-011 interacted with the same residues on EGFR found to be important for the binding of EGFR inhibitors cetuximab and panitumumab. Binding of SDT-011 to EGFR reduced the binding affinity of cetuximab to EGFR and could reactivate EGFR signaling in keratinocyte cell lines, ex vivo cetuximab-treated whole human skin, and A431-injected mice. Specific small molecules were topically applied and were delivered via a slow-release system derived from biodegradable nanoparticles that penetrate the hair follicles and sebaceous glands, within which EGFR is highly expressed. Our approach has the potential to reduce skin toxicity caused by EGFR inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Dermatopatias , Humanos , Animais , Camundongos , Cetuximab/efeitos adversos , Qualidade de Vida , Anticorpos Monoclonais/uso terapêutico , Panitumumabe/efeitos adversos , Antineoplásicos/toxicidade , Neoplasias/tratamento farmacológico
6.
Adv Healthc Mater ; 12(30): e2301548, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315950

RESUMO

Blockage of blood supply while administering chemotherapy to tumors, using trans-arterial chemoembolization (TACE), is the most common treatment for intermediate and advanced-stage unresectable Hepatocellular carcinoma (HCC). However, HCC is characterized by a poor prognosis and high recurrence rates (≈30%), partly due to a hypoxic pro-angiogenic and pro-cancerous microenvironment. This study investigates how modifying tissue stress while improving drug exposure in target organs may maximize the therapeutic outcomes. Porous degradable polymeric microspheres (MS) are designed to obtain a gradual occlusion of the hepatic artery that nourishes the liver, while enabling efficient drug perfusion to the tumor site. The fabricated porous MS are introduced intrahepatically and designed to release a combination therapy of Doxorubicin (DOX) and Tirapazamine (TPZ), which is a hypoxia-activated prodrug. Liver cancer cell lines that are treated with the combination therapy under hypoxia reveal a synergic anti-proliferation effect. An orthotopic liver cancer model, based on N1-S1 hepatoma in rats, is used for the efficacy, biodistribution, and safety studies. Porous DOX-TPZ MS are very effective in suppressing tumor growth in rats, and induction tissue necrosis is associated with high intratumor drug concentrations. Porous particles without drugs show some advantages over nonporous particles, suggesting that morphology may affect the treatment outcomes.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Ratos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Microesferas , Distribuição Tecidual , Porosidade , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Tirapazamina/farmacologia , Tirapazamina/uso terapêutico , Hipóxia/tratamento farmacológico , Microambiente Tumoral
7.
Discov Nano ; 18(1): 89, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37382727

RESUMO

Porous metals have gained interest in many fields such as biomedicine, electronics, and energy. Despite the many benefits that these structures may offer, one of the major challenges in utilizing porous metals is to incorporate active compounds, either small molecules or macromolecules, on these surfaces. Coatings that contain active molecules have previously been used for biomedical applications to enable the slow release of drugs, e.g., with drug-eluting cardiovascular stents. However, direct deposition of organic materials on metals by coatings is very difficult due to the challenge of obtaining uniform coatings, as well as issues related to layer adherence and mechanical stability. Our study describes an optimization of a production process of different porous metals, aluminum, gold, and titanium, using wet-etching. Pertinent physicochemical measurements were carried out to characterize the porous surfaces. Following the production of porous metal surface, a new methodology for incorporating active materials onto the metals by using mechanical entrapment of polymeric nanoparticles in metal pores was developed. To demonstrate our concept of active material incorporation, we produced an odor-releasing metal object with embedded particles loaded with thymol, an odoriferous molecule. Polymer particles were placed inside nanopores in a 3D-printed titanium ring. Chemical analysis, followed by smell tests, indicated that the smell intensity lasts significantly longer in the porous material containing the nanoparticles, compared with the free thymol.

9.
APL Bioeng ; 7(1): 016113, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36960390

RESUMO

Cancer phenotypes are often associated with changes in the mechanical states of cells and their microenvironments. Numerous studies have established correlations between cancer cell malignancy and cell deformability at the single-cell level. The mechanical deformation of cells is required for the internalization of large colloidal particles. Compared to normal epithelial cells, cancer cells show higher capacities to distort their shapes during the engulfment of external particles, thus performing phagocytic-like processes more efficiently. This link between cell deformability and particle uptake suggests that the cell's adherence state may affect this particle uptake, as cells become stiffer when plated on a more rigid substrate and vice versa. Based on this, we hypothesized that cancer cells of the same origin, which are subjected to external mechanical cues through attachment to surfaces with varying rigidities, may express different capacities to uptake foreign particles. The effects of substrate rigidity on cancer cell uptake of inert particles (0.8 and 2.4 µm) were examined using surfaces with physiologically relevant rigidities (from 0.5 to 64 kPa). Our data demonstrate a wave-like ("meandering") dependence of cell uptake on the rigidity of the culture substrate explained by a superposition of opposing physical and biological effects. The uptake patterns were inversely correlated with the expression of phosphorylated paxillin, indicating that the initial passive particle absorbance is the primary limiting step toward complete uptake. Overall, our findings may provide a foundation for mechanical rationalization of particle uptake design.

10.
Cancers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672446

RESUMO

Cannabis sativa plants have a wide diversity in their metabolite composition among their different chemovars, facilitating diverse anti-tumoral effects on cancer cells. This research examined the anti-tumoral effects of 24 cannabis extracts representative of three primary types of chemovars on head and neck squamous cell carcinoma (HNSCC). The chemical composition of the extracts was determined using High-Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS). The most potent anti-tumoral extracts were type III decarboxylated extracts, with high levels of Cannabidiol (CBD). We identified extract 296 (CAN296) as the most potent in inducing HNSCC cell death via proapoptotic and anti-proliferative effects. Using chemical fractionation of CAN296, we identified the CBD fraction as the primary inducer of the anti-tumoral activity. We succeeded in defining the combination of CBD with cannabichromene (CBC) or tetrahydrocannabinol (THC) present in minute concentrations in the extract, yielding a synergic impact that mimics the extract's full effect. The cytotoxic effect could be maximized by combining CBD with either CBC or THC in a ratio of 2:1. This research suggests using decarboxylated CBD-type extracts enriched with CBC for future preclinical trials aimed at HNSCC treatment.

11.
ACS Nano ; 17(3): 1946-1958, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468629

RESUMO

With the aim to locally enhance the efficacy of cancer nanotherapies, here we present metal iron based magnetoplasmonic drug-loaded nanocapsules (MAPSULES), merging powerful external magnetic concentration in the tumor and efficient photothermal actuation to locally boost the drug therapeutic action at ultralow drug concentrations. The MAPSULES are composed of paclitaxel-loaded polylactic-co-glycolic acid (PLGA) nanoparticles partially coated by a nanodome shape iron/silica semishell. The iron semishell has been designed to present a ferromagnetic vortex for incorporating a large quantity of ferromagnetic material while maintaining high colloidal stability. The large iron semishell provides very strong magnetic manipulation via magnetophoretic forces, enabling over 10-fold higher trapping efficiency in microfluidic channels than typical superparamagnetic iron oxide nanoparticles. Moreover, the iron semishell exhibits highly damped plasmonic behavior, yielding intense broadband absorbance in the near-infrared biological windows and photothermal efficiency similar to the best plasmonic nanoheaters. The in vivo therapeutic assays in a mouse xenograft tumor model show a high amplification of the therapeutic effects by combining magnetic concentration and photothermal actuation in the tumor, leading to a complete eradication of the tumors at ultralow nanoparticle and drug concentration (equivalent to only 1 mg/kg PLGA nanoparticles containing 8 µg/kg of paclitaxel, i.e., 100-500-fold lower than the therapeutic window of the free and PLGA encapsulated drug and 13-3000-fold lower than current nanotherapies combining paclitaxel and light actuation). These results highlight the strength of this externally controlled and amplified therapeutic approach, which could be applied to locally boost a wide variety of drugs for different diseases.


Assuntos
Nanocápsulas , Nanopartículas , Humanos , Animais , Camundongos , Ferro , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
12.
Drug Deliv Transl Res ; 13(5): 1170-1182, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35637333

RESUMO

Methionine aminopeptidase 2 (MetAp2) inhibition has been recognized as a promising approach for suppressing angiogenesis and cancer progression. Small molecule fumagillol derivatives with adamantane side groups were synthesized and evaluated for MetAp2 inhibition activity, and a lead molecule with superior abilities to inhibit the enzymatic activity of MetAp2 was identified. The compound, referred to as AD-3281, effectively suppressed proliferation of cancer and endothelial cells and impaired tube formation of endothelial cells in vitro. When administered systemically, AD-3281 was well tolerated and led to a significant suppression of human melanoma and mammary tumor xenografts grown in mice. The activity in vivo was associated with reduced angiogenesis and tumor proliferation as detected histologically. In order to develop a formulation that can solubilize AD-3281 with a minimal content of organic solvents, biodegradable nanoparticles comprised of poly-lactic-co-glycolic acid (PLGA) were fabricated and characterized. Compared with the free compound, AD-3281-loaded nanoparticles showed an advantageous cellular availability and uptake, leading to higher activity in cells and better transport in three-dimensional (3D) cultures. Taken together, we introduce a novel MetAp2 inhibitor with high anti-cancer activity and a stable nano-formulation with a high potential for future clinical translation.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Animais , Camundongos , Aminopeptidases , Metaloendopeptidases
13.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555109

RESUMO

Obstructive sleep apnea (OSA) is a highly prevalent condition, characterized by intermittent hypoxia (IH), sleep disruption, and altered autonomic nervous system function. OSA has been independently associated with dyslipidemia, insulin resistance, and metabolic syndrome. Brown adipose tissue (BAT) has been suggested as a modulator of systemic glucose tolerance through adaptive thermogenesis. Reductions in BAT mass have been associated with obesity and metabolic syndrome. No studies have systematically characterized the effects of chronic IH on BAT. Thus, we aimed to delineate IH effects on BAT and concomitant metabolic changes. C57BL/6J 8-week-old male mice were randomly assigned to IH during sleep (alternating 90 s cycles of 6.5% FIO2 followed by 21% FIO2) or normoxia (room air, RA) for 10 weeks. Mice were subjected to glucose tolerance testing and 18F-FDG PET-MRI towards the end of the exposures followed by BAT tissues analyses for morphological and global transcriptomic changes. Animals exposed to IH were glucose intolerant despite lower total body weight and adiposity. BAT tissues in IH-exposed mice demonstrated characteristic changes associated with "browning"-smaller lipids, increased vascularity, and a trend towards higher protein levels of UCP1. Conversely, mitochondrial DNA content and protein levels of respiratory chain complex III were reduced. Pro-inflammatory macrophages were more abundant in IH-exposed BAT. Transcriptomic analysis revealed increases in fatty acid oxidation and oxidative stress pathways in IH-exposed BAT, along with a reduction in pathways related to myogenesis, hypoxia, and IL-4 anti-inflammatory response. Functionally, IH-exposed BAT demonstrated reduced absorption of glucose on PET scans and reduced phosphorylation of AKT in response to insulin. Current studies provide initial evidence for the presence of a maladaptive response of interscapular BAT in response to chronic IH mimicking OSA, resulting in a paradoxical divergence, namely, BAT browning but tissue-specific and systemic insulin resistance. We postulate that oxidative stress, mitochondrial dysfunction, and inflammation may underlie these dichotomous outcomes in BAT.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Apneia Obstrutiva do Sono , Masculino , Animais , Camundongos , Resistência à Insulina/fisiologia , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Hipóxia/metabolismo , Obesidade/complicações , Insulina , Glucose/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Tecido Adiposo Marrom/metabolismo , Sono
14.
Nanoscale Adv ; 4(24): 5257-5269, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540111

RESUMO

The interaction of inert nano-particles with cells has significant effect on the potential cytotoxicity of the particles. The role of particle aspect ratio in the interaction with cells was largely studied in the literature; however non consistent conclusions were obtained. In the present study a detailed physical model is presented as well as a set of experimental work and a scan of literature data. The aim was to investigate the role of particle size and aspect ratio in cell uptake, and to examine possible sources of the literature inconsistency. Cells which provide the first line of contact with particles in the human body were incubated with seven types of particles. These included spherical and rod gold nanoparticles, as well as larger spherical polystyrene particles in various sizes. We stress that in order to achieve comparative insight careful attention needs to be given to the experimental conditions and to the data analysis. Furthermore, our physical model shows that conclusions regarding the role of aspect ratio in NP uptake largely depend on the radius of the particles. The aspect ratio cannot be regarded as a sole geometrical parameter which determines the interaction of inert nano-particles with cells. When discussing particles larger than 10 nm (for which passive diffusion is irrelevant), the effect of the aspect ratio flips depending on the particle thickness. For particles thicker than ∼35 nm, the longer they are the more toxic they would be, however this trend opposes for thinner NPs, where larger aspect ratio results in reduced uptake and toxicity. Therefore, rod non-functionalized particles whose thickness is between 15 and 30 nm, and are relatively long, are expected to be the safest, with minimal cytotoxicity.

15.
Am J Transl Res ; 14(9): 6243-6255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247237

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is an aggressive metastatic cancer with a very low survival rate. This tumor is hypovascularized and characterized by severe hypoxic regions, yet these regions are not impeded by the oxidative stress in their microenvironment. PDA's high resilience raises the need to find new effective therapeutic targets. This study investigated the suitability of methionine aminopeptidase 2 (MetAp2), a metallopeptidase known to play an important role in tumor progression, as a new target for treating PDA. In our examination of patient-derived PDA tissues, we found that MetAp2 is highly expressed in metastatic regions compared with primary sites. At the cellular level, we found that the basal expression levels of MetAp2 in pancreatic cancer cells were higher than its levels in endothelial cells. Pancreatic cancer cells showed a significant suppression of proliferation in a dose-dependent manner upon exposure to TNP-470, a selective MetAp2 inhibitor. In addition, a significant reduction in glutathione (GSH) levels - known for its importance in alleviating oxidative stress - was detected in all treated cells, suggesting a possible anti-cancer activity mechanism that would be feasible for treating highly hypoxic PDA tumors. Furthermore, in an orthotopic pancreatic cancer murine model, systemic oral treatment with a MetAp2 inhibitor significantly reduced tumors' growth. Taken together, our findings indicate that MetAp2 enhances tumor sensitivity to hypoxia and may provide an effective target for treating hypoxic tumors with high expression levels of MetAp2.

16.
Bio Protoc ; 12(7): e4375, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35530520

RESUMO

Delivery of drugs through the skin is a major challenge in the field of drug delivery systems. Quantification of materials, and specifically nanoparticles, within the skin layers is essential for the development of advanced topical and transdermal delivery systems. We have developed a technique for ex-vivo segmentation and evaluation of human skin samples treated with fluorescent nanoparticles. The method is based on horizontal cryosections of skin samples, followed by confocal microscopy and image analysis. This protocol is relatively simple to perform with basic histological tools, thus it can serve for various dermatology assays.

17.
Biomedicines ; 9(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34440151

RESUMO

Uptake of particles by cells involves various natural mechanisms that are essential for their biological functions. The same mechanisms are used in the engulfment of synthetic colloidal drug carriers, while the extent of the uptake affects the biological performance and selectivity. Thus far, little is known regarding the effect of external biomechanical stimuli on the capacity of the cells to uptake nano and micro carriers. This is relevant for anchorage-dependent cells that have detached from surfaces or for cells that travel in the body such as tumor cells, immune cells and various circulating stem cells. In this study, we hypothesize that cellular deformability is a crucial physical effector for the successful execution of the phagocytosis-like uptake in cancer cells. To test this assumption, we develop a well-controlled tunable method to compare the uptake of inert particles by cancer cells in adherent and non-adherent conditions. We introduce a self-designed 3D-printed apparatus, which enables constant stirring while facilitating a floating environment for cell incubation. We reveal a mechanically mediated phagocytosis-like behavior in various cancer cells, that was dramatically enhance in the detached cell state. Our findings emphasize the importance of including proper biomechanical cues to reliably mimic certain physiological scenarios. Beyond that, we offer a cost-effective accessible research tool to study mixed cultures for both adherent and non-adherent cells.

18.
Materials (Basel) ; 14(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202681

RESUMO

Calcium carbonate (CaCO3) is one of the most abundant substances on earth and has a large array of industrial applications. Considerable research has been conducted in an effort to synthesize calcium carbonate microparticles with controllable and specific morphologies and sizes. CaCO3 produced by a precipitation reaction of calcium nitrate and sodium carbonate solution was found to have high polymorphism and batch to batch variability. In this study, we investigated the polymorphism of the precipitated material and analyzed the chemical composition, particle morphology, and crystalline state revealing that the presence of silicon atoms in the precipitant is a key factor effecting particle shape and crystal state. An elemental analysis of single particles within a polymorphic sample, using energy-dispersive X-ray spectroscopy (EDS) conjugated microscopy, showed that only spherical particles, but not irregular shaped one, contained traces of silicon atoms. In agreement, silicon-containing additives lead to homogenous, amorphous nanosphere particles, verified by X-ray powder diffraction (XRD). Our findings provide important insights into the mechanism of calcium carbonate synthesis, as well as introducing a method to control the precipitants at the micro-scale for many diverse applications.

19.
Micromachines (Basel) ; 12(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071476

RESUMO

The understanding that systemic context and tissue crosstalk are essential keys for bridging the gap between in vitro models and in vivo conditions led to a growing effort in the last decade to develop advanced multi-organ-on-a-chip devices. However, many of the proposed devices have failed to implement the means to allow for conditions tailored to each organ individually, a crucial aspect in cell functionality. Here, we present two 3D-print-based fabrication methods for a generic multi-organ-on-a-chip device: One with a PDMS microfluidic core unit and one based on 3D-printed units. The device was designed for culturing different tissues in separate compartments by integrating individual pairs of inlets and outlets, thus enabling tissue-specific perfusion rates that facilitate the generation of individual tissue-adapted perfusion profiles. The device allowed tissue crosstalk using microchannel configuration and permeable membranes used as barriers between individual cell culture compartments. Computational fluid dynamics (CFD) simulation confirmed the capability to generate significant differences in shear stress between the two individual culture compartments, each with a selective shear force. In addition, we provide preliminary findings that indicate the feasibility for biological compatibility for cell culture and long-term incubation in 3D-printed wells. Finally, we offer a cost-effective, accessible protocol enabling the design and fabrication of advanced multi-organ-on-a-chip devices.

20.
Nanomedicine ; 36: 102414, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171468

RESUMO

Drug penetration through the skin is significant for both transdermal and dermal delivery. One mechanism that has attracted attention over the last two decades is the transport pathway of nanoparticles via hair follicle, through the epidermis, directly to the pilosebaceous unit and blood vessels. Studies demonstrate that particle size is an important factor for drug penetration. However, in order to gain more information for the purpose of improving this mode of drug delivery, a thorough understanding of the optimal physical particle properties is needed. In this study, we fabricated fluorescently labeled gold nanoparticles (GNP) with a tight control over the size and shape. The effect of the particles' physical parameters on follicular penetration was evaluated histologically. We used horizontal human skin sections and found that the optimal size for polymeric particles is 0.25 µm. In addition, shape penetration experiments revealed gold nanostars' superiority over spherical particles. Our findings suggest the importance of the particles' physical properties in the design of nanocarriers delivered to the pilosebaceous unit.


Assuntos
Ouro , Folículo Piloso/metabolismo , Nanopartículas Metálicas , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...