Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 13(4): 1072-1083, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643201

RESUMO

Mixotrophy, or the ability to acquire carbon from both auto- and heterotrophy, is a widespread ecological trait in marine protists. Using a metabarcoding dataset of marine plankton from the global ocean, 318,054 mixotrophic metabarcodes represented by 89,951,866 sequences and belonging to 133 taxonomic lineages were identified and classified into four mixotrophic functional types: constitutive mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM), endo-symbiotic specialist non-constitutive mixotrophs (eSNCM), and plastidic specialist non-constitutive mixotrophs (pSNCM). Mixotrophy appeared ubiquitous, and the distributions of the four mixotypes were analyzed to identify the abiotic factors shaping their biogeographies. Kleptoplastidic mixotrophs (GNCM and pSNCM) were detected in new zones compared to previous morphological studies. Constitutive and non-constitutive mixotrophs had similar ranges of distributions. Most lineages were evenly found in the samples, yet some of them displayed strongly contrasted distributions, both across and within mixotypes. Particularly divergent biogeographies were found within endo-symbiotic mixotrophs, depending on the ability to form colonies or the mode of symbiosis. We showed how metabarcoding can be used in a complementary way with previous morphological observations to study the biogeography of mixotrophic protists and to identify key drivers of their biogeography.


Assuntos
Eucariotos/classificação , Processos Autotróficos , Eucariotos/genética , Eucariotos/isolamento & purificação , Processos Heterotróficos , Oceanos e Mares , Filogeografia , Plâncton/classificação , Plâncton/genética , Plâncton/isolamento & purificação , Simbiose
2.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717023

RESUMO

In contemporary oceans diatoms are an important group of eukaryotic phytoplankton that typically dominate in upwelling regions and at high latitudes. They also make significant contributions to sporadic blooms that often occur in springtime. Recent surveys have revealed global information about their abundance and diversity, as well as their contributions to biogeochemical cycles, both as primary producers of organic material and as conduits facilitating the export of carbon and silicon to the ocean interior. Sequencing of diatom genomes is revealing the evolutionary underpinnings of their ecological success by examination of their gene repertoires and the mechanisms they use to adapt to environmental changes. The rise of the diatoms over the last hundred million years is similarly being explored through analysis of microfossils and biomarkers that can be traced through geological time, as well as their contributions to seafloor sediments and fossil fuel reserves. The current review aims to synthesize current information about the evolution and biogeochemical functions of diatoms as they rose to prominence in the global ocean.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Evolução Biológica , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Carbono/metabolismo , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA