Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(43): 17059-17067, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36251390

RESUMO

The chelator Bn2DT3A was used to produce a novel 68Ga complex for positron emission tomography (PET). Unusually, this system is stabilized by a coordinated hydroxide in aqueous solutions above pH 5, which confers sufficient stability for it to be used for PET. Bn2DT3A complexes Ga3+ in a hexadentate manner, forming a mer-mer complex with log K([Ga(Bn2DT3A)]) = 18.25. Above pH 5, the hydroxide ion coordinates the Ga3+ ion following dissociation of a coordinated amine. Bn2DT3A radiolabeling displayed a pH-dependent speciation, with [68Ga][Ga(Bn2DT3A)(OH)]- being formed above pH 5 and efficiently radiolabeled at pH 7.4. Surprisingly, [68Ga][Ga(Bn2DT3A)(OH)]- was found to show an increased stability in vitro (for over 2 h in fetal bovine serum) compared to [68Ga][Ga(Bn2DT3A)]. The biodistribution of [68Ga][Ga(Bn2DT3A)(OH)]- in healthy rats showed rapid clearance and excretion via the kidneys, with no uptake seen in the lungs or bones.


Assuntos
Quelantes , Radioisótopos de Gálio , Animais , Ratos , Radioisótopos de Gálio/química , Quelantes/química , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Hidróxidos , Compostos Radiofarmacêuticos/química
2.
J Chem Theory Comput ; 18(7): 4366-4372, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35584357

RESUMO

A Smolyak algorithm adapted to system-bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system-bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the "system" part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.

3.
J Chem Ecol ; 47(10-11): 859-876, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34014453

RESUMO

With carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA's conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


Assuntos
Anomuros/fisiologia , Sinais (Psicologia) , Percepção Olfatória , Fenetilaminas/metabolismo , Água do Mar/química , Animais , Oceanos e Mares
4.
J Chem Phys ; 152(16): 164303, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357787

RESUMO

The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.

5.
J Chem Phys ; 151(12): 124311, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575159

RESUMO

We report the results of calculations pertaining to the HH intramolecular stretching fundamentals of (p-H2)2 encapsulated in the large cage of structure II clathrate hydrate. The eight-dimensional (8D) quantum treatment assumes rotationless (j = 0) H2 moieties and a rigid clathrate structure but is otherwise fully coupled. The (H2)2-clathrate interaction is constructed in a pairwise-additive fashion, by combining the ab initio H2-H2O pair potential for flexible H2 and rigid H2O [D. Lauvergnat et al., J. Chem. Phys. 150, 154303 (2019)] and the six-dimensional (6D) H2-H2 potential energy surface [R. J. Hinde, J. Chem. Phys. 128, 154308 (2008)]. The calculations are performed by first solving for the eigenstates of a reduced-dimension 6D "intermolecular" Hamiltonian extracted from the full 8D Hamiltonian by taking the H2 moieties to be rigid. An 8D contracted product basis for the solution of the full problem is then constructed from a small number of the lowest-energy 6D intermolecular eigenstates and two discrete variable representations covering the H2-monomer internuclear distances. Converged results are obtained already by including just the two lowest intermolecular eigenstates in the final 8D basis of dimension 128. The two HH vibrational stretching fundamentals are computed for three hydrate domains having an increasing number of H2O molecules. For the largest domain, the two fundamentals are found to be site-split by ∼0.5 cm-1 and to be redshifted by about 24 cm-1 from the free-H2 monomer stretch frequency, in excellent agreement with the experimental value of 26 cm-1. A first-order perturbation theory treatment gives results that are nearly identical to those of the 8D quantum calculations.

6.
Front Physiol ; 10: 731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333474

RESUMO

The effects of ocean acidification on fish are only partially understood. Studies on olfaction are mostly limited to behavioral alterations of coral reef fish; studies on temperate species and/or with economic importance are scarce. The current study evaluated the effects of short- and medium-term exposure to ocean acidification on the olfactory system of gilthead seabream (Sparus aurata), and attempted to explain observed differences in sensitivity by changes in the protonation state of amino acid odorants. Short-term exposure to elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high PCO2 levels in the medium term; after 4 weeks exposure to high PCO2, the olfactory sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in high PCO2 water could be partly attributed to changes in the protonation state of the odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes changes in the charge distribution of odorant molecules, an essential component for ligand-receptor interaction. However, there are other mechanisms involved. At a histological level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. Therefore, the current study provides evidence for a direct, medium term, global effect of ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, and suggests a partial explanatory mechanism.

7.
J Chem Phys ; 150(15): 154303, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005099

RESUMO

We report the first fully coupled quantum six-dimensional (6D) bound-state calculations of the vibration-translation-rotation eigenstates of a flexible H2, HD, and D2 molecule confined inside the small cage of the structure II clathrate hydrate embedded in larger hydrate domains with up to 76 H2O molecules, treated as rigid. Our calculations use a pairwise-additive 6D intermolecular potential energy surface for H2 in the hydrate domain, based on an ab initio 6D H2-H2O pair potential for flexible H2 and rigid H2O. They extend to the first excited (v = 1) vibrational state of H2, along with two isotopologues, providing a direct computation of vibrational frequency shifts. We show that obtaining a converged v = 1 vibrational state of the caged molecule does not require converging the very large number of intermolecular translation-rotation states belonging to the v = 0 manifold up to the energy of the intramolecular stretch fundamental (≈4100 cm-1 for H2). Only a relatively modest-size basis for the intermolecular degrees of freedom is needed to accurately describe the vibrational averaging over the delocalized wave function of the quantum ground state of the system. For the caged H2, our computed fundamental translational excitations, rotational j = 0 → 1 transitions, and frequency shifts of the stretch fundamental are in excellent agreement with recent quantum 5D (rigid H2) results [A. Powers et al., J. Chem. Phys. 148, 144304 (2018)]. Our computed frequency shift of -43 cm-1 for H2 is only 14% away from the experimental value at 20 K.

8.
Int J Cardiol ; 282: 76-80, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772011

RESUMO

BACKGROUND: The inhibitory subunit of cardiac troponin (cTnI) is a gold standard cardiac biomarker and also an essential protein in cardiomyocyte excitation-contraction coupling. The interactions of cTnI with other proteins are fine-tuned by post-translational modification of cTnI. Mutations in cTnI can lead to hypertrophic cardiomyopathy. METHODS AND RESULTS: Here we report, for the first time, that cTnI is modified by arginine methylation in human myocardium. Using Western blot, we observed reduced levels of cTnI arginine methylation in human hypertrophic cardiomyopathy compared to dilated cardiomyopathy biopsies. Similarly, using a rat model of cardiac hypertrophy we observed reduced levels of cTnI arginine methylation compared to sham controls. Using mass spectrometry, we identified cTnI methylation sites at R74/R79 and R146/R148 in human cardiac samples. R146 and R148 lie at the boundary between the critical cTnI inhibitory and switch peptides; PRMT1 methylated an extended inhibitory peptide at R146 and R148 in vitro. Mutations at R145 that have been associated with hypertrophic cardiomyopathy hampered R146/R148 methylation by PRMT1 in vitro. H9c2 cardiac-like cells transfected with plasmids encoding for a methylation-deficient R146A/R148A cTnI protein developed cell hypertrophy, with a 32% increase in cell size after 72 h, compared to control cells. DISCUSSION: Our results provide evidence for a novel and significant cTnI post-translational modification. Our work opens the door to translational investigations of cTnI arginine methylation as a biomarker of disease, which can include e.g. cardiomyopathies, myocardial infarction and heart failure, and offers a novel way to investigate the effect of cTnI mutations in the inhibitory/switch peptides.


Assuntos
Arginina/genética , Arginina/metabolismo , Miocárdio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Masculino , Metilação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Faraday Discuss ; 212(0): 533-546, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30238938

RESUMO

In this study, we examine the effect of a flexible description of the clathrate hydrate framework on the translation-rotation (TR) eigenstates of guest molecules such as molecular hydrogen. Traditionally, the water cage structure is assumed to be rigid, thus ignoring the quantum nature of hydrogen nuclei in the water framework. However, it has been shown that protons in a water molecule possess a marked delocalised character in many situations, ranging from water clusters to proton transfer in the bulk. In the case of water clathrates, all previous TR bound-state calculations of guest molecules consider that the caging water molecules are fixed at their equilibrium geometry. Only recently, a static investigation of the role of proton configurations was performed by Bacic and co-workers by sampling a very large number of different static structures of water clathrates. Here, we investigate the importance of the rotational degrees of freedom of the water cage on the TR levels of the guest molecule using an efficient adiabatic decoupling scheme. Our approach combines rigid body diffusion Monte Carlo calculations for the description of the rotational degree of freedom of water molecules surrounding the guest molecular hydrogen to an efficient Smolyak sparse-grid technique for the calculation of the TR levels. This approach allows us to take into account the highly anharmonic nature of the rotational water motions in a high-dimensional system. The clathrate-induced splittings of the j = 1 rotational levels are much more sensitive to the quantum hydrogen delocalisation than the translational transitions. This result is in good agreement with the previous static study of Bacic and co-workers.

10.
J Chem Phys ; 148(14): 144304, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655345

RESUMO

We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

11.
J Chem Theory Comput ; 14(5): 2684-2695, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29566332

RESUMO

In this study, we assess the influence of solvation on the accuracy and reliability of isotropic nuclear magnetic shielding calculations for amino acids in comparison to experimental data. We focus particularly on the performance of solvation methods for different protonation states, as biological molecules occur almost exclusively in aqueous solution and are subject to protonation with pH. We identify significant shortcomings of current implicit solvent models and present a hybrid solvation approach that improves agreement with experimental data by taking into account the presence of direct interactions between amino acid protonation state and water molecules.


Assuntos
Prótons , Solventes/química , Aminoácidos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Químicos , Teoria Quântica , Reprodutibilidade dos Testes , Termodinâmica , Água/química
12.
J Chem Phys ; 148(1): 014301, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29306273

RESUMO

Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication.

13.
Inorg Chem ; 57(2): 811-820, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29271200

RESUMO

Photoactive transition metal compounds that are prone to reversible redox reactions are important for myriad applications, including catalysis, optoelectronics, and sensing. This article describes chemical and electrochemical methods to prepare cluster complex (Bu4N)[{Mo6I8}Cl6], a rare example of a 23 e- cluster complex within the family of octahedral clusters of Mo, W, and Re. The low temperature and room temperature crystal structures; electronic structure; and the magnetic, optical, and electrochemical properties of this complex are described.

14.
Chemistry ; 22(49): 17552-17556, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27723203

RESUMO

The generation of in situ sp2 -sp3 diboron adducts has revolutionised the synthesis of organoboranes. Organocatalytic diboration reactions have represented a milestone in terms of unpredictable reactivity of these adducts. However, current methodologies have limitations in terms of substrate scope, selectivity and functional group tolerance. Here a new methodology based on the use of simple amines as catalyst is reported. This methodology provides a completely selective transformation overcoming current substrate scope and functional/protecting group limitations. Mechanistic studies have been included in this report.

15.
Dalton Trans ; 45(39): 15427-15435, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27605435

RESUMO

This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3- is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>0.6) and narrowest emission bands were found for complexes with a {Mo6I8}4+ cluster core. Moreover, cyclic voltammetric studies revealed that (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] confer enhanced stability towards electrochemical oxidation relative to corresponding starting complexes (nBu4N)2[{Mo6X8}X6].

16.
Glob Chang Biol ; 22(12): 3914-3926, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27353732

RESUMO

Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions.


Assuntos
Mudança Climática , Concentração de Íons de Hidrogênio , Peptídeos/química , Água do Mar/química , Animais , Braquiúros/fisiologia , Peixes/fisiologia , Invertebrados/fisiologia , Oceanos e Mares
18.
Phys Chem Chem Phys ; 18(1): 529-49, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26619274

RESUMO

We study the vibrational spectra of small neutral gold (Au2-Au10) and silver (Ag2-Au5) clusters using the vibrational self-consistent field method (VSCF) in order to account for anharmonicity. We report harmonic, VSCF, and correlation-corrected VSCF calculations obtained using a vibrational configuration interaction approach (VSCF/VCI). Our implementation of the method is based on an efficient calculation of the potential energy surfaces (PES), using periodic density functional theory (DFT) with a plane-wave pseudopotential basis. In some cases, we use an efficient technique (fast-VSCF) assisted by the Voter-Chen potential in order to get an efficient reduction of the number of pair-couplings between modes. This allows us to efficiently reduce the computing time of 2D-PES without degrading the accuracy. We found that anharmonicity of the gold clusters is very small with maximum rms deviations of about 1 cm(-1), although for some particular modes anharmonicity reaches values slightly larger than 2 cm(-1). Silver clusters show slightly larger anharmonicity. In both cases, large differences between calculated and experimental vibrational frequencies (when available) stem more likely from the quality of the electronic structure method used than from vibrational anharmonicity. We show that noble gas embedding often affects the vibrational properties of these clusters more than anharmonicity, and discuss our results in the context of experimental studies.

19.
J Phys Chem A ; 119(47): 11583-90, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26535801

RESUMO

In this study, we present a thorough benchmarking of our direct anharmonic vibrational variation-perturbation approach for adsorbed molecules on surfaces. We then use our method to describe the vibrational structure of a water molecule adsorbed on a Pt(111) surface and compare our results with the available experimental data. By using an explicitly correlated hybrid method to describe the molecule-surface interaction, we improve on the initial periodic PBE/DZP potential energy landscape and obtain vibrational frequencies that are of near-experimental accuracy. We introduce an implementation of anharmonic z-polarized IR intensity calculation and explain the absence of antisymmetric O-H stretch in the experimental data for the adsorbed water molecule, while the symmetric O-H stretch is predicted to be visible.

20.
J Phys Chem A ; 119(12): 3075-88, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25742369

RESUMO

We investigate the nature and role of krypton embedding in small neutral gold clusters. For some of these clusters, we observe a particular site-dependent character of the Kr binding that does not completely follow the criterion of binding at low-coordinated sites, widely accepted for interaction of a noble gas with closed-shell metal systems such as metal surfaces. We aim at understanding the effect of low dimensionality and open-shell electronic structure of the odd-numbered clusters on the noble gas-metal cluster interaction. First, we investigate the role of attractive and repulsive forces, and the frontier molecular orbitals. Second, we investigate the Au-Kr interaction in terms of reactivity and bonding character. We use a reactivity index derived from Fukui formalism, and criteria provided by the electron localization function (ELF), in order to classify the type of bonding. We carry out this study on the minimum energy structures of neutral gold clusters, as obtained using pseudo potential plane-wave density functional theory (DFT). A model is proposed that includes the effect of attractive electrostatic, van der Waals and repulsive forces, together with effects originating from orbital overlap. This satisfactorily explains minimum configurations of the noble gas-gold cluster systems, the site preference of the noble gas atoms, and changes in electronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...