Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197604

RESUMO

Leptospirosis is a worldwide zoonosis caused by the motile bacterium Leptospira. This disease can cause hemorrhagic symptoms, multi-visceral and renal failures, resulting in one million cases and approximately 60,000 deaths each year. The motility of Leptospira is highly involved in its virulence and is ensured by the presence of two flagella in the periplasm. Several proteins that require the formation of disulfide bridges are essential for flagellar function. In Leptospira, these redox reactions are catalysed by the vitamin K epoxide reductase domain-containing protein (VKORdcp). The aim of the present work was to study the conservation of VKORdcp among Leptospira species and its interactions with putative substrates and inhibitor. Our results evidenced the presence of ten amino acids specific to either pathogenic or saprophytic species. Furthermore, structural studies revealed a higher affinity of the enzyme for vitamin K1 quinone, compared to ubiquinone. Finally, characterisation of the binding of a potential inhibitor revealed the involvement of some VKORdcp amino acids that have not been present in the human enzyme, in particular the polar residue D114. Our study thus paves the way for the future development of Leptospira VKORdcp inhibitors, capable of blocking bacterial motility. Such molecules could therefore offer a promising therapeutic alternative to antibiotics, especially in the event of the emergence of antibiotic-resistant strains.Communicated by Ramaswamy H. Sarma.

2.
Pest Manag Sci ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031300

RESUMO

Rodent management involves the use of anticoagulant rodenticides (ARs). This use has resulted in the selection of numerous resistance alleles in the Vkorc1 gene, encoding the target enzyme of ARs. In Africa, although rodents are a major problem as a consequence of their transport and transmission of zoonotic pathogens, and damage to crops, the use of ARs and the spread of resistance alleles are poorly documented. We attempted to address both issues in Chad which is one of the largest countries in Africa. Owing to its location at the crossroads of central and northern Africa, Chad is representative of many African countries. METHODS: Using a sampling of nearly 300 rodents composed of invasive and endemic rodents collected in six of Chad's largest cities, exposure to ARs was analyzed by their quantification in the liver; the spread of AR resistance alleles was analyzed by Vkorc1 sequencing. RESULTS: We demonstrate the use of both ARs generations in Chadian cities and report the total sequencing of the Vkorc1 for 44 Mastomys natalensis with detection of two different haplotypes, the sequencing of the Vkorc1 for two other endemic rodent species, M. kollmannspergeri and Arvicanthis niloticus, and finally the detection of three new missense mutations - V29E, V69E and D127V - in R. rattus, potentially associated with resistance to ARs. DISCUSSION: These results should argue for the implementation of a reasoned management of rodent populations in Africa to avoid the spread of ARs resistance alleles. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Bioorg Med Chem ; 94: 117453, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37741121

RESUMO

Vitamin K antagonists (VKAs) anticoagulants have been used since the 1950s as medicines and rodenticides. These molecules are mainly 4-hydroxycoumarin derivatives and act by inhibiting the vitamin K epoxide reductase (VKORC1), an endoplasmic reticulum membrane resident enzyme. However, many VKORC1 mutations have been reported over the last decade, inducing VKAs resistances and thus treatments failures. Although studies have reported experimental and computational investigations of VKAs based on VKORC1 structural homology models, the development of new effective anticoagulants has been quite complex due to the lack of structural data and reliable structure-activity relationships. However, the recent publication of VKORC1 crystal structure provides new information for further studies. Based on these findings, we combined chemical synthesis, enzymatic assays and molecular modelling methods to design a structure-activity relationship (SAR) model. Our results proved that the lipophilicity, the membrane permeability of inhibitors and their affinity towards human VKORC1 enzyme are the main characteristics for potent anticoagulants. Our SAR model managed to rank compounds according to their ability to inhibit the human VKORC1. Such a tool might constitute an alternative to evaluate new molecules potency before their chemical synthesis and biological assessment and might assist the development of new VKAs.

4.
Biochim Biophys Acta Gen Subj ; 1867(2): 130280, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423740

RESUMO

BACKGROUND: Protein Disulfide Isomerase (PDI) enzyme is an emerging therapeutic target in oncology and hematology. Although PDI reductase activity has been studied with isolated fragments of the protein, natural structural variations affecting reductase activity have not been addressed. METHODS: In this study, we discovered four coding splice variants of the Pdi pre-mRNA in rats. In vitro Michaelis constants and apparent maximum steady-state rate constants after purification and distribution in different rat tissues were determined. RESULTS: The consensus sequence was found to be the most expressed splice variant while the second most expressed variant represents 15 to 35% of total Pdi mRNA. The third variant shows a quasi-null expression profile and the fourth was not quantifiable. The consensus sequence splice variant and the second splice variant are widely expressed (transcription level) in the liver and even more present in males. Measurements of the reductase activity of recombinant PDI indicate that the consensus sequence and third splice variant are fully active variants. The second most expressed variant, differing by a lack of signal peptide, was found active but less than the consensus sequence. GENERAL SIGNIFICANCE: Our work emphasizes the importance of taking splice variants into account when studying PDI-like proteins to understand the full biological functionalities of PDI.


Assuntos
Isomerases de Dissulfetos de Proteínas , Sinais Direcionadores de Proteínas , Masculino , Ratos , Animais , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo , Oxirredutases/metabolismo
5.
Front Toxicol ; 4: 907892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647575

RESUMO

Anticoagulant rodenticides (ARs) are important tools for controlling rodent pests, but they also pose a health threat to non-target species. ARs are one of the most common causes of pet poisoning. However, exposure of domestic animals to subclinical doses of ARs is poorly documented. To study the random exposure of dogs and cats to ARs, feces from animals showing no clinical signs of rodenticide poisoning were collected from a network of French and Belgian veterinarians. We analyzed fresh feces from 304 dogs and 289 cats by liquid chromatography-tandem mass spectrometry. This study showed a limited prevalence of AR exposure in dogs and cats of 2.6 and 4.5% respectively. In both species, access to the outdoors is a risk factor for ARs exposure. In contrast, the sex of the animals did not affect the ARs exposure status. The observation of the ratio of cis and trans isomers suggested primary exposure in dogs, but also in some cats. While primary exposure in dogs appears to be related to the use of ARs as plant protection products, primary exposure in cats may be malicious, as warfarin, an anticoagulant formerly used as a rodenticide and now used only in humans, was found in 4 of 13 exposed cats. Secondary exposure may also occur in cats.Our study showed reduced exposure in dogs and cats, compared to wildlife, which often has high exposure, especially in areas where rodent control is important.

6.
Pestic Biochem Physiol ; 183: 105052, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430058

RESUMO

Rodent control is mainly done using anticoagulant rodenticides leading to the death of rodents through internal bleeding by targeting the VKORC1 protein. However, mutations in VKORC1 can lead to resistance to anticoagulant rodenticides that can cause treatment failure in the field. This study provides the first insight into the distribution, frequency and characterization of Vkorc1 mutations in roof rats (Rattus rattus) in France and in three administrative areas of Spain. The roof rat is present in France while it was thought to have almost disappeared with the expansion of the brown rat. Nevertheless, it has been found mainly in maritime areas. 151 roof rats out of 219 tested presented at least one missense mutation in the coding sequences of Vkorc1 gene (i.e. 69.0% of the rat). Nine Vkorc1 genotypes were detected (Y25F, A26P, R40G, S57F, W59C, W59R, H68N, Y25F/K152T and Y25F/W59R. Biochemical characterization of the consequences of these different genotypes proved that these various genotypes did not induce severe resistance to anticoagulant rodenticides. Even if many mutations of the Vkorc1 gene are present in roof rat populations in France, their management may be based in a first approach, considering the low levels of resistance induced, on the use of first-generation anticoagulants less dangerous for wildlife. The use of second-generation may be considered when treatment failure is observed or when bait consumption is limited.


Assuntos
Rodenticidas , Animais , Anticoagulantes/farmacologia , Resistência a Medicamentos/genética , França , Mutação , Mutação de Sentido Incorreto , Ratos , Rodenticidas/farmacologia , Espanha , Vitamina K Epóxido Redutases/genética
7.
Biochem Cell Biol ; 100(2): 152-161, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007172

RESUMO

Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is a target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and are suspected to confer resistance to VKA and (or) affect its velocity. Nevertheless, the results of these studies have been conflicting, and the functional characterization of these mutations in the cell system is complex because of the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to evaluate the vitamin K cycle in HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when VKORC1 and VKORC1L1 were knocked out, the K/KO balance decreased significantly due to the accumulation of vitamin KO. In contrast, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating the limitation of VKOR activity. This limitation was shown to be due to insufficient expression of the activation partner of VKORC1, as overexpression of protein disulfide isomerase (PDI) overcomes this limitation. This study is the first to demonstrate the functional interaction between VKORC1 and PDI.


Assuntos
Isomerases de Dissulfetos de Proteínas , Vitamina K , Anticoagulantes , Células HEK293 , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
8.
Arch Toxicol ; 96(2): 535-544, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075517

RESUMO

The ecotoxicity of anticoagulants used for rodent pests' management is a major concern, particularly with second generation anticoagulants, which are more persistent in the body of rodents and therefore more likely to cause secondary exposure in their predators. One of the solutions envisaged to mitigate this risk is to use stereoisomers of these anticoagulants, each of which has particular pharmacokinetics. However, the few studies published to date have considered only one species and one sex. Here, we study the pharmacokinetics of the 4 stereoisomers of 3.4 mg/kg of difethialone in rats (Rattus norvegicus) and 3 mg/kg in mice (Mus musculus) in both sexes and propose a model to choose the optimal stereoisomer efficacy/ecotoxicity mixture for the management of all these animals. Our results show that while the most persistent stereoisomer (E3-cis) is common to both species and sexes, the pharmacokinetics of the other stereoisomers show marked differences between sexes and species. Thus, the area under curve (AUC) of E4-trans in male rats is four times lower than in females or mice, making it a priori unusable in male rats. Conversely, our modeling seems to show that the E1-trans stereoisomer seems to offer the best compromise AUC persistence. In conclusion, we highlight that studies on anticoagulants must necessarily integrate research on the effect of gender and species both on efficacy and with regard to the ecotoxicity of these molecules.


Assuntos
4-Hidroxicumarinas/farmacocinética , Anticoagulantes/farmacocinética , Rodenticidas/farmacocinética , 4-Hidroxicumarinas/química , Animais , Anticoagulantes/química , Área Sob a Curva , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Rodenticidas/química , Fatores Sexuais , Especificidade da Espécie , Estereoisomerismo
9.
Sci Total Environ ; 810: 151291, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748846

RESUMO

Wild raptors are widely used to assess exposure to different environmental contaminants, including anticoagulant rodenticides (ARs). ARs are used on a global scale for rodent control, and act by disruption of the vitamin K cycle that results in haemorrhage usually accompanied by death within days. Some ARs are highly persistent and bioaccumulative, which can cause significant exposure of non-target species. We characterized AR exposure in a heterogeneous sample of dead raptors collected over 12 years (2008-2019) in south-eastern France. Residue analysis of 156 liver samples through LC-MS/MS revealed that 50% (78/156) were positive for ARs, with 13.5% (21/156) having summed second-generation AR (SGAR) concentrations >100 ng/g ww. While SGARs were commonly detected (97.4% of positive samples), first-generation ARs were rarely found (7.7% of positive samples). ARs were more frequently detected and at greater concentration in predators (prevalence: 82.5%) than in scavengers (38.8%). Exposure to multiple ARs was common (64.1% of positive samples). While chlorophacinone exposure decreased over time, an increasing exposure trend was observed for the SGAR brodifacoum, suggesting that public policies may not be efficient at mitigating risk of exposure for non-target species. Haemorrhage was observed in 88 birds, but AR toxicosis was suspected in only 2 of these individuals, and no difference in frequency of haemorrhage was apparent in birds displaying summed SGAR levels above or below 100 ng/g ww. As for other contaminants, 17.2% of liver samples (11/64) exhibited Pb levels compatible with sub-clinical poisoning (>6 µg/g dw), with 6.3% (4/64) above the threshold for severe/lethal poisoning (>30 µg/g dw). Nine individuals with Pb levels >6 µg/g dw also had AR residues, demonstrating exposure to multiple contaminants. Broad toxicological screening for other contaminants was positive for 18 of 126 individuals, with carbofuran and mevinphos exposure being the suspected cause of death of 17 birds. Our findings demonstrate lower but still substantial AR exposure of scavenging birds compared to predatory birds, and also illustrate the complexity of diagnosing AR toxicosis through forensic investigations.


Assuntos
Rodenticidas , Animais , Anticoagulantes/análise , Aves , Cromatografia Líquida , Monitoramento Ambiental , Rodenticidas/análise , Espectrometria de Massas em Tandem
10.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494651

RESUMO

Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Hipotálamo , Masculino , Reprodução , Estações do Ano
11.
Gen Comp Endocrinol ; 311: 113853, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265346

RESUMO

Seasonally breeding mammals display timely physiological switches between reproductive activity and sexual rest, which ensure synchronisation of births at the most favourable time of the year. These switches correlate with seasonal changes along the hypothalamo-pituitary-gonadal axis, but they are primarily orchestrated at the hypothalamic level through environmental control of KISS1-dependent GnRH release. Our field study shows that births of fossorial water voles, Arvicola terrestris, are concentrated between March and October, which indicates the existence of an annual reproductive cycle in this species. Monthly field monitoring for over a year further reveals dramatic seasonal changes in the morphology of the ovary, uterus and lateral scent glands, which correlate with the reproductive status. Finally, we demonstrate seasonal variation in kisspeptin expression within the hypothalamic arcuate nucleus. Altogether, this study demonstrates a marked rhythm of seasonal breeding in the water vole and we speculate that this is governed by seasonal changes in photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Feminino , Hipotálamo/metabolismo , Sistemas Neurossecretores , Estações do Ano
12.
Environ Res ; 200: 111422, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062198

RESUMO

Anticoagulant rodenticides (AR) resistance has been defined as "a major loss of efficacy due to the presence of a strain of rodent with a heritable and commensurately reduced sensitivity to the anticoagulant". The mechanism that supports this resistance has been identified as based on mutations in the Vkorc1 gene leading to severe resistance in rats and mice. This study evaluates the validity of this definition in the fossorial water vole and explores the possibility of a non-genetic diet-based resistance in a strict herbivorous rodent species. Genetic support was explored by sequencing the Vkorc1 gene and the diet-based resistance was explored by the dosing of vitamins K in liver of voles according to seasons. From a sample of 300 voles, only 2 coding mutations, G71R and S149I, were detected in the Vkorc1 gene in the heterozygous state with low allele frequencies (0.5-1%). These mutations did not modify the sensitivity to AR, suggesting an absence of genetic Vkorc1-based resistance in the water vole. On the contrary, vitamin K1 was shown to be 5 times more abundant in the liver of the water vole compared to rats. This liver concentration was shown to seasonally vary, with a trough in late winter and a peak in late spring/early summer related to the growth profile of grass. This increase in concentration might be responsible for the increased resistance of water voles to AR. This study highlights a non-genetic, diet-related resistance mechanism in rodents to AR. This diet-based resistance might explain the different evolution of the Vkorc1 gene in the fossorial water vole compared to rats and mice.


Assuntos
Rodenticidas , Animais , Anticoagulantes , Arvicolinae/genética , Dieta , Proteínas de Membrana , Camundongos , Ratos , Rodenticidas/toxicidade , Estações do Ano , Vitamina K Epóxido Redutases/genética
13.
Environ Toxicol Pharmacol ; 81: 103536, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130091

RESUMO

Cyclic water vole population explosions can be controlled in some European countries with anticoagulant rodenticides leading sometimes to wildlife poisonings due to the toxin's tissue persistence. Here, we analyzed the pharmacokinetics of rodenticide residues in voles and we explored potential ways of improving the mass application of these agents based on the concept of stereoisomers. We demonstrated the dramatic persistence of bromadiolone in vole tissues with a hepatic half-life of about 10-30 days, while the tissue persistence of chlorophacinone is rather short with a hepatic half-life of about one day. The dramatic persistence of bromadiolone is due to the trans-isomer group (the major compound in bromadiolone), while the cis-isomer group has a short half-life. Because of resistance to chlorophacinone, the cis-bromadiolone isomers may constitute an excellent compromise between efficacy and ecotoxicological risk to control voles. A mathematical model is proposed to favor the development of baits mixed with cis-isomer groups.


Assuntos
4-Hidroxicumarinas/farmacocinética , Anticoagulantes/farmacocinética , Modelos Biológicos , Rodenticidas/farmacocinética , 4-Hidroxicumarinas/química , Animais , Anticoagulantes/química , Arvicolinae , Feminino , Indanos/farmacocinética , Fígado/metabolismo , Masculino , Controle de Roedores/métodos , Rodenticidas/química , Estereoisomerismo
14.
Toxicol Lett ; 333: 71-79, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768651

RESUMO

All vitamin K antagonist active substances used as rodenticides were reclassified in 2016 by the European authorities as active substances "toxic for reproduction", using a "read-across" alternative method based on warfarin, a human vitamin K antagonist drug. Recent study suggested that all vitamin K antagonist active substances are not all teratogenic. Using a neonatal exposure protocol, warfarin evokes skeletal deformities in rats, while bromadiolone, a widely used second-generation anticoagulant rodenticide, failed to cause such effects. Herein, using a rat model we investigated the mechanisms that may explain teratogenicity differences between warfarin and bromadiolone, despite their similar vitamin K antagonist mechanism of action. This study also included coumatetralyl, a first-generation active substance rodenticide. Pharmacokinetic studies were conducted in rats to evaluate a potential difference in the transfer of vitamin K antagonists from mother to fetus. The data clearly demonstrate that warfarin is highly transferred from the mother to the fetus during gestation or lactation. In contrast, bromadiolone transfer from dam to the fetus is modest (5% compared to warfarin). This difference appears to be associated to almost complete uptake of bromadiolone by mother's liver, resulting in very low exposure in plasma and eventually in other peripheric tissues. This study suggests that the pharmacokinetic properties of vitamin K antagonists are not identical and could challenge the classification of such active substances as "toxic for reproduction".


Assuntos
4-Hidroxicumarinas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/sangue , Rodenticidas/toxicidade , Teratogênese/efeitos dos fármacos , Teratogênicos/toxicidade , Vitamina K/antagonistas & inibidores , Varfarina/toxicidade , 4-Hidroxicumarinas/farmacocinética , Administração Oral , Animais , Animais Recém-Nascidos , Animais Lactentes , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/metabolismo , Masculino , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Rodenticidas/farmacocinética , Teratogênicos/farmacocinética , Varfarina/farmacocinética
15.
Food Chem Toxicol ; 143: 111518, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32645465

RESUMO

Anticoagulant rodenticides are widely used for rodent control in agricultural and urban settings. Their intense use can sometimes result in accidental exposure and even poisoning of livestock. Can milk, eggs or meat derived from such accidently exposed animals be consumed by humans? Data on the pharmacokinetics of chlorophacinone in milk of accidently exposed ewes were used to estimate the risk associated with its consumption. Three days after accidental ingestion, chlorophacinone was detected in plasma of 18 ewes, with concentrations exceeding 100 ng/mL in 11 animals. Chlorophacinone was detected in milk on day 2 post-exposure and remained quantifiable for at least 7 days in milk of these 11 ewes. Concentrations in milk were much lower than in plasma and decreased quickly (mean half-life of 2 days). This study demonstrated dose-dependent mammary transfer of ingested chlorophacinone. Variation in prothrombin time (PT) on Day 3 suggested that some of the ewes that ingested chlorophacinone may have been adversely affected, but PT did not facilitate estimation of the quantity of chlorophacinone consumed. Using safety factors described in the literature, consumption of dairy products derived from these ewes after a one-week withdrawal period would pose low risk to consumers.


Assuntos
Indanos/administração & dosagem , Lactação , Leite/química , Resíduos de Praguicidas , Rodenticidas/administração & dosagem , Ovinos , Animais , Exposição Ambiental , Feminino , Humanos , Indanos/química , Indanos/farmacocinética , Rodenticidas/química , Rodenticidas/farmacocinética
16.
Rapid Commun Mass Spectrom ; 34(20): e8871, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32585774

RESUMO

RATIONALE: Anticoagulant rodenticides (ARs) are used worldwide for rodent population control to protect human health and biodiversity, and to prevent agricultural and economic losses. Rodents may develop a metabolic resistance to ARs. In order to help understand such metabolic resistance, mass spectrometry was used to position the hydroxylated group of hydroxyl metabolites of second-generation ARs (SGARs). METHODS: Most AR pesticides are derived from the 4-hydroxycoumarin/thiocoumarin family. We used low-resolution and high-resolution mass spectrometry to understand the fragmentation pathways of the ARs and their respective metabolites, and to better define the structure of their tandem mass spectrometry product ions. RESULTS: Seven specific product ions were evidenced for five ARs, with their respective chemical structures. Those ions were obtained as well from the mass spectra of the hydroxyl metabolites of four SGARs, difenacoum (DFM), brodifacoum (BFM), difethialone (DFTL) and flocoumafen (FLO), with different positions of the hydroxyl group. CONCLUSIONS: The differences in chemical structure between DFM on the one hand and BFM, FLO and DFTL on the other could explain the differences in bioavailability between these two groups of molecules. The defined product ions will be used to investigate the part played by the metabolic issue in the field resistance of SGARs.


Assuntos
Anticoagulantes/química , Anticoagulantes/metabolismo , Rodenticidas/química , Rodenticidas/metabolismo , Espectrometria de Massas em Tandem/métodos , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/metabolismo , 4-Hidroxicumarinas/farmacocinética , Animais , Anticoagulantes/farmacocinética , Disponibilidade Biológica , Hidroxilação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos Sprague-Dawley , Rodenticidas/farmacocinética
17.
Biochemistry ; 59(13): 1351-1360, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182040

RESUMO

The vitamin K epoxide reductase (VKORC1) enzyme is of primary importance in many physiological processes, i.e., blood coagulation, energy metabolism, and arterial calcification prevention, due to its role in the vitamin K cycle. Indeed, VKORC1 catalyzes reduction of vitamin K epoxide to quinone and then to hydroquinone. However, the three-dimensional VKORC1 structure remains experimentally undetermined, because of the endoplasmic reticulum membrane location of this enzyme. Here we present a molecular modeling investigation of the VKORC1 enzymatic site structure and function, supported by in vitro enzymatic assays. Four VKORC1 mutants were designed in silico (F55G, F55Y, N80G, and F83G) based on a previous study that identified residues F55, N80, and F83 as being crucial for vitamin K epoxide binding. F55G, N80G, and F83G nonconservative mutants were all predicted to be inactive by molecular modeling analyses. However, the F55Y conservative mutant was expected to be active compared to wild-type VKORC1. In vitro enzymatic assays performed on recombinant proteins assessed our molecular modeling hypotheses and led us to describe the role of accurate VKORC1 active site residues with respect to VKORC1. Residues F55, N80, and F83 appeared to act in a concerted manner to keep vitamin K epoxide close to the C135 catalytic residue. Residues F55 and N80 prevent naphthoquinone head rotation away from the active site, assisted by residue F83 that prevents vitamin K from sliding outside the enzymatic pocket, through hydrophobic tail stabilization. Our results thus highlighted the specific functions of VKORC1 catalytic pocket residues and evidenced the ability of our structural model to predict biological effects of VKORC1 mutations.


Assuntos
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/química , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Humanos , Modelos Moleculares , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
18.
Reprod Toxicol ; 93: 131-136, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045655

RESUMO

Vitamin K antagonists (VKA) are not recommended during pregnancy because warfarin (a first-generation VKA) is associated with a malformation syndrome "the fetal warfarin syndrome" (FWS). VKA are also used for rodent management worldwide. Recently, the Committee for Risk Assessment responsible for the European chemical legislation for advances on the safe use of chemicals had classed 8 anticoagulant used as rodenticides in the reprotoxic category 1A or 1B. This classification emerges from a read-across prediction of toxicity considering the warfarin malformation syndrome. Herein, our study explores the teratogenicity of warfarin at the human therapeutic dose and that of bromadiolone, a second-generation anticoagulant rodenticide. Using a rat model, our study demonstrates that warfarin used at the therapeutic dose is able to induce teratogenicity, while in the same conditions bromadiolone does not induce any teratogenic effect, challenging the classification of all VKA as reprotoxic molecules.


Assuntos
4-Hidroxicumarinas/toxicidade , Anticoagulantes/toxicidade , Rodenticidas/toxicidade , Teratogênicos/toxicidade , Vitamina K/antagonistas & inibidores , Varfarina/toxicidade , Anormalidades Induzidas por Medicamentos , Animais , Osso e Ossos/anormalidades , Feminino , Masculino , Troca Materno-Fetal , Nariz/anormalidades , Gravidez , Ratos Sprague-Dawley
19.
Arch Toxicol ; 94(3): 795-801, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047980

RESUMO

The current management of rodent pest populations is based on second-generation anticoagulant rodenticides (SGAR). These molecules, of which difethialone is part, are much more efficient than the first generation. Nevertheless, this efficiency comes with a major drawback, SGARs are tissue persistent that increases the exposure of rodent predators to them. According to its chemical structure, difethialone has four stereoisomers, whose specific inhibition potency and pharmacokinetic have never been described and might be useful to design new eco-friendly rodenticides. The study aimed to investigate the ability to inhibit anticoagulant target enzyme (VKORC1) and the pharmacokinetics in rats of the four difethialone stereoisomers in rats. We show that stereoisomers are all highly efficient to inhibit VKORC1 activity, but they have distinct initial half-life with 6.0 h, 25.4 h, 69.3 h, and 82.3 h for, respectively, E4-trans, E2-cis, E1-trans, and E3-cis stereoisomer. These results open the way of the development of eco-friendly and efficient rodenticide by mixing some of these stereoisomers. Preferential incorporation of the E4-trans stereoisomer (high inhibitory VKORC1 potency, relatively shorter liver half-life) into difethialone rodenticides baits might result in a more eco-friendly product than current commercially available difethialone formulations. In addition, we put forward modelling to help design bait according to the circumstance of use (presence of non-target species, food competition, etc.) by modulating the theorical AUC and and the theorical concentration of the product at the death of the rodent pest. Thus, this modeling might allow to diminish the use of laboratory animal in assay.


Assuntos
4-Hidroxicumarinas/farmacologia , Anticoagulantes/farmacologia , Rodenticidas/farmacologia , Animais , Masculino , Ratos , Estereoisomerismo , Vitamina K Epóxido Redutases/metabolismo
20.
J Chromatogr A ; 1618: 460848, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31932088

RESUMO

The need for the control of rodent populations with anticoagulant rodenticides remains actual, and enantioselective analytical methods are mandatory to understand ecotoxicity issues of those chiral pesticides. This study presents two enantioselective methods to achieve the residue levels and differentiated persistence of the four stereoisomers of difethialone (called in this work E1-trans, E2-cis, E3-cis and E4-trans), which is one of the most toxic second generation anticoagulant rodenticide. Their enantiomeric fraction evaluation in biological matrices of rats was determined by two LC-MS/MS methods. The first one (chiral-LC-MS/MS) combined a chiral column employed in reversed-phase mode (with acetonitrile-water mobile phase) to be compatible with mass spectrometry detection. The second one was also a LC-MS/MS method but with a reversed phase column after a derivatization step with (1S)-(-)-camphanic chloride. Extraction process combined Solid-Liquid extraction and sorbent cartridges. The methods were fully validated. The chiral column was chosen as a reference method for our laboratory because it was quicker and cheaper, and enantioresolution and sensitivity were better. This chiral-LC-MS/MS method was used to measure the enantiomeric fraction of the four stereoisomers of difethialone in rodent biological matrices (liver, plasma, blood and feces) of female rats treated with 3.5 mg/kg of difethialone. The results showed that metabolism is not the same for all the stereoisomers: cis-E3-difethialone was the most persistent, and E4-trans-difethialone was the most quickly eliminated. This chiral-LC-MS/MS method will be used to study the pharmacokinetics of the four stereoisomers of difethialone, and for ecotoxicological surveillance to evaluate the specific persistence of each stereoisomer of difethialone in case of secondary exposure of wildlife non-target species.


Assuntos
4-Hidroxicumarinas/química , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , 4-Hidroxicumarinas/sangue , Animais , Fezes/química , Feminino , Fígado/metabolismo , Masculino , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estereoisomerismo , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...