Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(8): 4810-4840, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33830764

RESUMO

Histone deacetylase 6 (HDAC6) is a promising therapeutic target for the treatment of neurodegenerative disorders. SW-100 (1a), a phenylhydroxamate-based HDAC6 inhibitor (HDAC6i) bearing a tetrahydroquinoline (THQ) capping group, is a highly potent and selective HDAC6i that was shown to be effective in mouse models of Fragile X syndrome and Charcot-Marie-Tooth disease type 2A (CMT2A). In this study, we report the discovery of a new THQ-capped HDAC6i, termed SW-101 (1s), that possesses excellent HDAC6 potency and selectivity, together with markedly improved metabolic stability and druglike properties compared to SW-100 (1a). X-ray crystallography data reveal the molecular basis of HDAC6 inhibition by SW-101 (1s). Importantly, we demonstrate that SW-101 (1s) treatment elevates the impaired level of acetylated α-tubulin in the distal sciatic nerve, counteracts progressive motor dysfunction, and ameliorates neuropathic symptoms in a CMT2A mouse model bearing mutant MFN2. Taken together, these results bode well for the further development of SW-101 (1s) as a disease-modifying HDAC6i.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Quinolinas/química , Acetilação , Animais , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Cristalografia por Raios X , Modelos Animais de Doenças , Meia-Vida , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fenótipo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Quinolinas/metabolismo , Quinolinas/uso terapêutico , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
2.
Nature ; 578(7795): 419-424, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996848

RESUMO

ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia1-and early-onset Parkinson's disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system.


Assuntos
Lisossomos/metabolismo , Poliaminas/metabolismo , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/genética , Animais , Biocatálise , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Catepsina B/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Endocitose , Humanos , Lisossomos/patologia , Camundongos , Mutação , Neurônios/metabolismo , Fenótipo , Poliaminas/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-31501194

RESUMO

Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.


Assuntos
Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Doença/etiologia , Animais , Humanos
4.
ACS Chem Neurosci ; 10(3): 1679-1695, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30511829

RESUMO

Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.


Assuntos
Benzamidas/farmacologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/enzimologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
5.
Brain ; 141(3): 673-687, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415205

RESUMO

Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease. The aim of this study was to explore whether histone deacetylase 6 (HDAC6) can serve as a therapeutic target focusing on the mutant glycyl-tRNA synthetase (GlyRS/GARS)-induced peripheral neuropathy. Peripheral nerves and dorsal root ganglia from the C201R mutant Gars mouse model showed reduced acetylated α-tubulin levels. In primary dorsal root ganglion neurons, mutant GlyRS affected neurite length and disrupted normal mitochondrial transport. We demonstrated that GlyRS co-immunoprecipitated with HDAC6 and that this interaction was blocked by tubastatin A, a selective inhibitor of the deacetylating function of HDAC6. Moreover, HDAC6 inhibition restored mitochondrial axonal transport in mutant GlyRS-expressing neurons. Systemic delivery of a specific HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and partially restored nerve conduction and motor behaviour in mutant Gars mice. Our study demonstrates that α-tubulin deacetylation and disrupted axonal transport may represent a common pathogenic mechanism underlying Charcot-Marie-Tooth disease and it broadens the therapeutic potential of selective HDAC6 inhibition to other genetic forms of axonal Charcot-Marie-Tooth disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Glicina-tRNA Ligase/genética , Desacetilase 6 de Histona/metabolismo , Mutação/genética , Animais , Transporte Axonal/genética , Células Cultivadas , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Gânglios Espinais/citologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Condução Nervosa/genética , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Desempenho Psicomotor/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tubulina (Proteína)/metabolismo
6.
Nat Commun ; 8(1): 861, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021520

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)-mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs.Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.


Assuntos
Esclerose Lateral Amiotrófica/genética , Transporte Axonal , Desacetilase 6 de Histona/metabolismo , Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/genética , Adolescente , Adulto , Idoso , Sistemas CRISPR-Cas , Feminino , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Ácidos Hidroxâmicos , Indóis , Células-Tronco Pluripotentes Induzidas , Masculino , Mutação Puntual , Cultura Primária de Células , Pirimidinas
7.
Neurobiol Dis ; 105: 300-320, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28238949

RESUMO

Peripheral neuropathies are characterized by a progressive and length-dependent loss of peripheral nerve function. This can be caused either by genetic defects, classified as 'inherited peripheral neuropathies', or they can be acquired throughout life. In that case, the disease is caused by various insults such as toxins and mechanical injuries, or it can arise secondary to medical conditions such as metabolic disorders, nutritional deficiencies, inflammation and infections. Peripheral neuropathies are not only very heterogeneous in etiology, but also in their pathology and clinical presentation. A commonality amongst all peripheral neuropathies is that no pharmacological disease-modifying therapies currently exist that can reverse or cure these diseases. Moreover, the length-dependent nature of the disease, affecting the longest nerves at the most distal sites, suggests an important role for disturbances in axonal transport, directly or indirectly linked to alterations in the cytoskeleton. In this review, we will give a systematic overview of the main arguments for the involvement of axonal transport defects in both inherited and acquired peripheral neuropathies. In addition, we will discuss the possible therapeutic strategies that can potentially counteract these disturbances, as this particular pathway might be a promising strategy to find a cure. Since counteracting axonal transport defects could limit the axonal degeneration and could be a driving force for neuronal regeneration, the benefits might be twofold.


Assuntos
Transporte Axonal/fisiologia , Axônios/patologia , Doenças do Sistema Nervoso Periférico , Animais , Humanos , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia
8.
Neurotherapeutics ; 14(2): 417-428, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27957719

RESUMO

Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy, with an estimated prevalence of 1 in 2500. The degeneration of motor and sensory nerve axons leads to motor and sensory symptoms that progress over time and have an important impact on the daily life of these patients. Currently, there is no curative treatment available. Recently, we identified histone deacetylase 6 (HDAC6), which deacetylates α-tubulin, as a potential therapeutic target in axonal CMT (CMT2). Pharmacological inhibition of the deacetylating function of HDAC6 reversed the motor and sensory deficits in a mouse model for mutant "small heat shock protein B1" (HSPB1)-induced CMT2 at the behavioral and electrophysiological level. In order to translate this potential therapeutic strategy into a clinical application, small drug-like molecules that are potent and selective HDAC6 inhibitors are essential. To screen for these, we developed a method that consisted of 3 distinct phases and that was based on the pathological findings in the mutant HSPB1-induced CMT2 mouse model. Three different inhibitors (ACY-738, ACY-775, and ACY-1215) were tested and demonstrated to be both potent and selective HDAC6 inhibitors. Moreover, these inhibitors increased the innervation of the neuromuscular junctions in the gastrocnemius muscle and improved the motor and sensory nerve conduction, confirming that HDAC6 inhibition is a potential therapeutic strategy in CMT2. Furthermore, ACY-1215 is an interesting lead molecule as it is currently tested in clinical trials for cancer. Taken together, these results may speed up the translation of pharmacological inhibition of HDAC6 into a therapy against CMT2.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/enzimologia , Avaliação Pré-Clínica de Medicamentos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Pirimidinas/farmacologia , Animais , Transporte Axonal/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Junção Neuromuscular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Pirimidinas/uso terapêutico , Células Tumorais Cultivadas
9.
Chemistry ; 23(1): 128-136, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717044

RESUMO

Selective inhibitors of histone deacetylase 6 (HDAC6) are an emerging class of pharmaceuticals due to the involvement of HDAC6 in different pathways related to neurodegenerative diseases, cancer, and immunology. Herein, the synthesis of ten new benzohydroxamic acids, constructed by employing the tetrahydrobenzothiazepine core as a privileged pharmacophoric unit, is described. This is the first report on the synthesis and isolation of octahydrodibenzothiazepines and octahydro-6H-benzocycloheptathiazepines, which were then used to develop a new class of HDAC6 inhibitors. Evaluations of their HDAC-inhibiting activity resulted in the identification of cis-N-(4-hydroxycarbamoylbenzyl)-1,2,3,4,4a,5,11,11a-octahydrodibenzo[b,e][1,4]thiazepine-10,10-dioxide and cis-N-(4-hydroxycarbamoylbenzyl)-7-trifluoromethyl-1,2,3,4,4a,5,11,11a-octahydrodibenzo[b,e][1,4]thiazepine-10,10-dioxide as highly potent and selective HDAC6 inhibitors with activity in the low nanomolar range, which also show excellent selectivity on the enzymatic and cellular levels. Furthermore, four promising inhibitors were subjected to an Ames fluctuation assay, which revealed no mutagenic effects associated with these structures.


Assuntos
Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/metabolismo , Tiazepinas/química , Sítios de Ligação , Cicloeptanos/química , Cicloexanos/química , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Humanos , Concentração Inibidora 50 , Isomerismo , Simulação de Dinâmica Molecular , Tiazepinas/síntese química
10.
Org Biomol Chem ; 14(8): 2537-49, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822143

RESUMO

The synthesis of novel isoform-selective HDAC inhibitors is considered to be an important, emerging field in medicinal chemistry. In this paper, the preparation and assessment of thirteen selective HDAC6 inhibitors is disclosed, elaborating on a previously developed thiaheterocyclic Tubathian series. All compounds were evaluated in vitro for their ability to inhibit HDAC6, and a selection of five potent compounds was further screened toward all HDAC isoforms (HDAC1-11). The capability of these Tubathian analogs to inhibit α-tubulin deacetylation was assessed as well, and ADME/Tox data were collected. This thorough SAR evaluation revealed that the oxidized, para-substituted hydroxamic acids can be recognized as valuable lead structures in the pursuit of novel potent and selective HDAC6 inhibitors.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/síntese química , Humanos , Ácidos Hidroxâmicos/química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
11.
ACS Chem Neurosci ; 7(2): 240-58, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26599234

RESUMO

Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/enzimologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/citologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Interleucina-2/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
12.
Chem Commun (Camb) ; 51(48): 9868-71, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25994553

RESUMO

A small library of 3-[(4-hydroxycarbamoylphenyl)aminomethyl]benzothiophenes was prepared and assessed as a novel class of HDAC6 inhibitors, leading to the identification of three representatives as potent and selective HDAC6 inhibitors. Further tests with regard to inflammatory responses indicated that HDAC6 inhibition can be uncoupled from transcriptional inhibition at the level of activated NF-κB, AP-1, and GR.


Assuntos
Inibidores de Histona Desacetilases/síntese química , Ácidos Hidroxâmicos/síntese química , Tiofenos/síntese química , Linhagem Celular Tumoral , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Modelos Moleculares , NF-kappa B/metabolismo , Tiofenos/química , Fator de Transcrição AP-1/metabolismo , Tubulina (Proteína)/metabolismo
13.
Int J Biochem Cell Biol ; 44(8): 1299-304, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575637

RESUMO

Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system. The disease is characterized by a progressive muscle weakness and atrophy, sensory loss, foot (and hand) deformities and steppage gait. While many of the genes associated with axonal CMT have been identified, to date it is unknown which mechanism(s) causes the disease. However, genetic findings indicate that the underlying mechanisms mainly converge to the axonal cytoskeleton. In this review, we will summarize the evidence for this pathogenic convergence. Furthermore, recent work with new transgenic mouse models has led to the identification of histone deacetylase 6 as a potential therapeutic target for inherited peripheral neuropathies. This enzyme deacetylates microtubules and plays a crucial role in the regulation of axonal transport. These findings offer new perspectives for a potential therapy to treat axonal Charcot-Marie-Tooth disease and other neurodegenerative disorders characterized by axonal transport defects.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Predisposição Genética para Doença/genética , Histona Desacetilases/genética , Animais , Transporte Axonal/genética , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Desacetilase 6 de Histona , Humanos , Camundongos , Modelos Genéticos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...