Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 270: 116389, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593588

RESUMO

Dipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house. Specifically, we synthesized fluorescent inhibitors containing nitrobenzoxadiazole (NBD), dansyl (DNS) and cyanine-3 (Cy3) reporters to visualize intracellular DPP8/9. We demonstrate that the fluorescent inhibitors have high affinity and selectivity towards DPP8/9 over related S9 family members. The NBD-labeled DPP8/9 inhibitors were nominated as the best in class compounds to visualize DPP8/9 in human cells. Furthermore, a method has been developed for selective labeling and visualization of active DPP8/9 in vitro by fluorescence microscopy. A collection of potent and selective biotinylated DPP8/9-targeting probes was also prepared by replacing the fluorescent reporter with a biotin group. The present work provides the first DPP8/9-targeting fluorescent compounds as useful chemical tools for the study of DPP8 and DPP9's biological functions.


Assuntos
Dipeptidases , Dipeptidil Peptidase 4 , Humanos , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases , Domínio Catalítico , Serina Endopeptidases , Serina Proteases , Dipeptidases/metabolismo
2.
J Med Chem ; 66(18): 12717-12738, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721854

RESUMO

Dipeptidyl peptidase 9 (DPP9) is a proline-selective serine protease that plays a key role in NLRP1- and CARD8-mediated inflammatory cell death (pyroptosis). No selective inhibitors have hitherto been reported for the enzyme: all published molecules have grossly comparable affinities for DPP8 and 9 because of the highly similar architecture of these enzymes' active sites. Selective DPP9 inhibitors would be highly instrumental to address unanswered research questions on the enzyme's role in pyroptosis, and they could also be investigated as therapeutics for acute myeloid leukemias. Compounds presented in this manuscript (42 and 47) combine low nanomolar DPP9 affinities with unprecedented DPP9-to-DPP8 selectivity indices up to 175 and selectivity indices >1000 toward all other proline-selective proteases. To rationalize experimentally obtained data, a molecular dynamics study was performed. We also provide in vivo pharmacokinetics data for compound 42.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases , Vildagliptina , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Prolina , Inibidores de Proteases , Serina Endopeptidases , Vildagliptina/farmacologia
3.
ChemMedChem ; 17(15): e202200097, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35760756

RESUMO

Vildagliptin is a marketed DPP4 inhibitor, used in the management of type 2 diabetes. The molecule also has notable DPP8/9 affinity, with some preference for DPP9. Therefore, we aimed to use vildagliptin as a starting point for selective DPP8/9 inhibitors, and to engineer out the parent compound's DPP4-affinity. In addition, we wanted to identify substructures in the obtained molecules that allow their further optimization into inhibitors with maximal DPP9 selectivity. Various 2S-cyanopyrrolidines and isoindoline were investigated as P1 residues of vildagliptin analogs. The obtained set was expanded with derivatives bearing O-substituted, N-(3-hydroxyadamantyl)glycine moieties at the P2 position. In this way, representatives were discovered with DPP8/9 potencies comparable to the parent molecule, but with overall selectivity towards DPP4, DPP2, FAP, and PREP. Furthermore, the most promising molecules in this series have a 4- to 7-fold preference for DPP9 over DPP8. Finally, a molecular dynamics study was carried out to maximize our insight into experimental selectivity data.


Assuntos
Diabetes Mellitus Tipo 2 , Dipeptidases , Inibidores da Dipeptidil Peptidase IV , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Humanos , Vildagliptina
4.
J Med Chem ; 62(2): 774-797, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30571121

RESUMO

Increased Gram-negative bacteria resistance to antibiotics is becoming a global problem, and new classes of antibiotics with novel mechanisms of action are required. The caseinolytic protease subunit P (ClpP) is a serine protease conserved among bacteria that is considered as an interesting drug target. ClpP function is involved in protein turnover and homeostasis, stress response, and virulence among other processes. The focus of this study was to identify new inhibitors of Escherichia coli ClpP and to understand their mode of action. A focused library of serine protease inhibitors based on diaryl phosphonate warheads was tested for ClpP inhibition, and a chemical exploration around the hit compounds was conducted. Altogether, 14 new potent inhibitors of E. coli ClpP were identified. Compounds 85 and 92 emerged as most interesting compounds from this study due to their potency and, respectively, to its moderate but consistent antibacterial properties as well as the favorable cytotoxicity profile.


Assuntos
Endopeptidase Clp/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Organofosfonatos/química , Inibidores de Serina Proteinase/química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Compostos de Bifenilo/química , Endopeptidase Clp/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Organofosfonatos/metabolismo , Organofosfonatos/farmacologia , Estrutura Terciária de Proteína , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...