Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675827

RESUMO

The authors would like to make the following corrections to this published paper [...].

2.
Bio Protoc ; 12(3): e4315, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35284605

RESUMO

Probing the molecular interactions of viral-host protein complexes to understand pathogenicity is essential in modern virology to help the development of antiviral therapies. Common binding assays, such as co-immunoprecipitation or pull-downs, are helpful in investigating intricate viral-host proteins interactions. However, such assays may miss low-affinity and favour non-specific interactions. We have recently incorporated photoreactive amino acids at defined residues of a viral protein in vivo, by introducing amber stop codons (TAG) and using a suppressor tRNA. This is followed by UV-crosslinking, to identify interacting host proteins in live mammalian cells. The affinity-purified photo-crosslinked viral-host protein complexes are further characterized by mass spectrometry following extremely stringent washes. This combinatorial site-specific incorporation of a photoreactive amino acid and affinity purification-mass spectrometry strategy allows the definition of viral-host protein contacts at single residue resolution and greatly reduces non-specific interactors, to facilitate characterization of viral-host protein interactions. Graphic abstract: Schematic overview of the virus-host interaction assay based on an amber suppression approach. Mammalian cells grown in Bpa-supplemented medium are co-transfected with plasmids encoding viral sequences carrying a Flag tag, a (TAG) stop codon at the desired position, and an amber suppressor tRNA (tRNACUA)/aminoacyl tRNA synthetase (aaRS) orthogonal pair. Cells are then exposed to UV, to generate protein-protein crosslinks, followed by immunoprecipitation with anti-Flag magnetic beads. The affinity-purified crosslinks are probed by western blot using an anti-Flag antibody and the crosslinked host proteins are characterised by mass spectrometry.

4.
Sci Rep ; 12(1): 2030, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132103

RESUMO

The Baculovirus/insect cell expression system is a powerful technology for reconstitution of eukaryotic macromolecular assemblies. Most multigene expression platforms rely on Tn7-mediated transposition for transferring the expression cassette into the baculoviral genome. This allows a rigorous characterization of recombinant bacmids but involves multiple steps, a limitation when many constructs are to be tested. For parallel expression screening and potential high throughput applications, we have established an open source multigene-expression toolbox exploiting homologous recombination, thus reducing the recombinant baculovirus generation to a single-step procedure and shortening the time from cloning to protein production to 2 weeks. The HR-bac toolbox is composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. They contain single or dual expression cassettes bearing different affinity tags and their design facilitates the mix and match utilization of expression units from Multibac constructs. The overall cost of virus generation with HR-bac toolbox is relatively low as the preparation of linearized baculoviral DNA only requires standard reagents. Various multiprotein assemblies (nuclear hormone receptor heterodimers, the P-TEFb or the ternary CAK kinase complex associated with the XPD TFIIH subunit) are used as model systems to validate the toolbox presented.

5.
Vaccines (Basel) ; 9(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696162

RESUMO

The Herpes Simplex Virus (HSV-1) immediate-early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint of a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells. Our findings indicate that ICP22 interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16, has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.

6.
BMC Mol Cell Biol ; 22(1): 43, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461828

RESUMO

BACKGROUND: The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. RESULTS: Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. CONCLUSION: We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.


Assuntos
RNA Longo não Codificante/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Ciclina T/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição
8.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927736

RESUMO

Jumonji-domain-containing protein 6 (JMJD6) is a Fe(II) and 2-oxogluterate (2OG) dependent oxygenase involved in gene regulation through post-translationally modifying nuclear proteins. It is highly expressed in many cancer types and linked to tumor progression and metastasis. Four alternatively-spliced jmjd6 transcripts were annotated. Here, we focus on the two most abundantly expressed ones, which we call jmjd6-2 and jmjd6-Ex5. TCGA SpliceSeq data revealed a significant decrease of jmjd6-Ex5 transcripts in patients and postmortem tissue of several tumors. The two protein isoforms are distinguished by their C-terminal sequences, which include a serine-rich region (polyS-domain) in JMJD6-2 that is not present in JMJD6-Ex5. Immunoprecipitation followed by LC-MS/MS for JMJD6-Ex5 shows that different sets of proteins interact with JMJD6-2 and JMJD6-Ex5 with only a few overlaps. In particular, we found TFIIF-associating CTD phosphatase (FCP1), proteins of the survival of motor neurons (SMN) complex, heterogeneous nuclear ribonucleoproteins (hnRNPs) and upstream binding factor (UBF) to interact with JMJD6-Ex5. Like JMJD6-2, both UBF and FCP1 comprise a polyS-domain. The polyS domain of JMJD6-2 might block the interaction with polyS-domains of other proteins. In contrast, JMJD6-2 interacts with many SR-like proteins with arginine/serine-rich (RS)-domains, including several splicing factors. In an HIV-based splicing reporter assay, co-expression of JMJD6-2 inhibited exon inclusion, whereas JMJD6-Ex5 did not have any effect. Furthermore, the silencing of jmjd6 by siRNAs favored jmjd6-Ex5 transcripts, suggesting that JMJD6 controls splicing of its own pre-mRNA. The distinct molecular properties of JMJD6-2 and JMJD6-Ex5 open a lead into the functional implications of the variations of their relative abundance in tumors.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Splicing de RNA , Células HEK293 , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias/metabolismo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
9.
Nucleic Acids Res ; 48(10): 5670-5683, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329775

RESUMO

Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3Å-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies.


Assuntos
Ciclofilinas/química , Fator de Iniciação 4A em Eucariotos/química , Proteínas de Ligação a RNA/química , Spliceossomos/química , Linhagem Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Inflamação/genética , Modelos Moleculares , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Spliceossomos/metabolismo
10.
Transcription ; 9(4): 262-271, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29345523

RESUMO

Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Humanos , Imunidade Inata , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/imunologia , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
11.
Mol Cell ; 67(3): 357-359, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777948

RESUMO

In this issue of Molecular Cell, Morchikh et al. (2017) describe a new ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1. This complex regulates the innate immune response to DNA viruses and is distinct from the HEXIM1-7SK RNA complex that regulates transcription elongation.


Assuntos
Fator B de Elongação Transcricional Positiva/genética , Proteínas de Ligação a RNA/genética , Células HeLa , Humanos , RNA Longo não Codificante , RNA Nuclear Pequeno/genética
12.
Proc Natl Acad Sci U S A ; 113(45): 12721-12726, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791144

RESUMO

The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the "PYNT" sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.

13.
Retrovirology ; 11: 51, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24985467

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) gene expression is primarily regulated at the step of transcription elongation. The viral Tat protein recruits the Positive Transcription Elongation Factor b (P-TEFb) and the Super Elongation Complex (SEC) to the HIV promoter and enhances transcription by host RNA polymerase II. RESULTS: To map residues in the cyclin box of cyclin T1 that mediate the binding of P-TEFb to its interacting host partners and support HIV transcription, a pool of N-terminal cyclin T1 mutants was generated. Binding and functional assays in cells identified specific positions in cyclin T1 that are important for (i) association of P-TEFb with Hexim1, Cdk9 and SEC/AFF4 (ii) supporting Tat-transactivation in murine cells and (iii) inhibition of basal and Tat-dependent HIV transcription in human cells. Significantly, a unique cyclin T1 mutant where a Valine residue at position 107 was mutated to Glutamate (CycT1-V107E) was identified. CycT1-V107E did not bind to Hexim1 or Cdk9, and also could not assemble on HIV TAR or 7SK-snRNA. However, it bound strongly to AFF4 and its association with HIV Tat was slightly impaired. CycT1-V107E efficiently inhibited HIV replication in human T cell lines and in CD4(+) primary cells, and enforced HIV transcription repression in T cell lines that harbor a transcriptionally silenced integrated provirus. CONCLUSIONS: This study outlines the mechanism by which CycT1-V107E mutant inhibits HIV transcription and enforces viral latency. It defines the importance of N-terminal residues of cyclin T1 in mediating contacts of P-TEFb with its transcription partners, and signifies the requirement of a functional P-TEFb and SEC in mediating HIV transcription.


Assuntos
Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , HIV/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Células 3T3 , Animais , Ciclina T/química , Células HEK293 , Humanos , Camundongos , Mutação Puntual , Relação Estrutura-Atividade , Linfócitos T/virologia , Fatores de Transcrição , Fatores de Elongação da Transcrição , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia
14.
Retrovirology ; 11: 50, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24985203

RESUMO

BACKGROUND: The positive transcription elongation factor b (P-TEFb) plays an essential role in activating HIV genome transcription. It is recruited to the HIV LTR promoter through an interaction between the Tat viral protein and its Cyclin T1 subunit. P-TEFb activity is inhibited by direct binding of its subunit Cyclin T (1 or 2) with Hexim (1 or 2), a cellular protein, bound to the 7SK small nuclear RNA. Hexim1 competes with Tat for P-TEFb binding. RESULTS: Mutations that impair human Cyclin T1/Hexim1 interaction were searched using systematic mutagenesis of these proteins coupled with a yeast two-hybrid screen for loss of protein interaction. Evolutionary conserved Hexim1 residues belonging to an unstructured peptide located N-terminal of the dimerization domain, were found to be critical for P-TEFb binding. Random mutagenesis of the N-terminal region of Cyclin T1 provided identification of single amino-acid mutations that impair Hexim1 binding in human cells. Furthermore, conservation of critical residues supported the existence of a functional Hexim1 homologue in nematodes. CONCLUSIONS: Single Cyclin T1 amino-acid mutations that impair Hexim1 binding are located on a groove between the two cyclin folds and define a surface overlapping the HIV-1 Tat protein binding surface. One residue, Y175, in the centre of this groove was identified as essential for both Hexim1 and Tat binding to P-TEFb as well as for HIV transcription.


Assuntos
Ciclina T/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas de Ligação a RNA/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Ciclina T/química , Humanos , Ligação de Hidrogênio , Mutação Puntual , Dobramento de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição , Técnicas do Sistema de Duplo-Híbrido
15.
Elife ; 32014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24925319

RESUMO

Gene regulation relies on transcription factors (TFs) exploring the nucleus searching their targets. So far, most studies have focused on how fast TFs diffuse, underestimating the role of nuclear architecture. We implemented a single-molecule tracking assay to determine TFs dynamics. We found that c-Myc is a global explorer of the nucleus. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. Our observations are consistent with a model in which the exploration geometry of TFs is restrained by their interactions with nuclear structures and not by exclusion. The geometry-controlled kinetics of TFs target-search illustrates the influence of nuclear architecture on gene regulation, and has strong implications on how proteins react in the nucleus and how their function can be regulated in space and time.


Assuntos
Núcleo Celular/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Humanos , Proteínas Luminescentes/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(16): 6081-6, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24715733

RESUMO

Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion.


Assuntos
Luz , Engenharia de Proteínas , Subunidades Proteicas/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Animais , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos da radiação , Estrutura Terciária de Proteína , Ratos , Receptores Ionotrópicos de Glutamato/química , Raios Ultravioleta , Xenopus
17.
Proc Natl Acad Sci U S A ; 111(4): 1491-6, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434558

RESUMO

Aire induces the expression of a large set of autoantigen genes in the thymus, driving immunological tolerance in maturing T cells. To determine the full spectrum of molecular mechanisms underlying the Aire transactivation function, we screened an AIRE-dependent gene-expression system with a genome-scale lentiviral shRNA library, targeting factors associated with chromatin architecture/function, transcription, and mRNA processing. Fifty-one functional allies were identified, with a preponderance of factors that impact transcriptional elongation compared with initiation, in particular members of the positive transcription elongation factor b (P-TEFb) involved in the release of "paused" RNA polymerases (CCNT2 and HEXIM1); mRNA processing and polyadenylation factors were also highlighted (HNRNPL/F, SFRS1, SFRS3, and CLP1). Aire's functional allies were validated on transfected and endogenous target genes, including the generation of lentigenic knockdown (KD) mice. We uncovered the effect of the splicing factor Hnrnpl on Aire-induced transcription. Transcripts sensitive to the P-TEFb inhibitor flavopiridol were reduced by Hnrnpl knockdown in thymic epithelial cells, independently of their dependence on Aire, therefore indicating a general effect of Hnrnpl on RNA elongation. This conclusion was substantiated by demonstration of HNRNPL interactions with P-TEFb components (CDK9, CCNT2, HEXIM1, and the small 7SK RNA). Aire-containing complexes include 7SK RNA, the latter interaction disrupted by HNRNPL knockdown, suggesting that HNRNPL may partake in delivering inactive P-TEFb to Aire. Thus, these results indicate that mRNA processing factors cooperate with Aire to release stalled polymerases and to activate ectopic expression of autoantigen genes in the thymus.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Interferência de RNA , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Camundongos , Fatores de Transcrição/fisiologia , Proteína AIRE
18.
Nucleic Acids Res ; 41(3): 1591-603, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275552

RESUMO

Co-transcriptional pre-mRNA processing relies on reversible phosphorylation of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNAP II). In this study, we replaced in live cells the endogenous Rpb1 by S2A Rpb1, where the second serines (Ser2) in the CTD heptapeptide repeats were switched to alanines, to prevent phosphorylation. Although slower, S2A RNAP II was able to transcribe. However, it failed to recruit splicing components such as U2AF65 and U2 snRNA to transcription sites, although the recruitment of U1 snRNA was not affected. As a consequence, co-transcriptional splicing was impaired. Interestingly, the magnitude of the S2A RNAP II splicing defect was promoter dependent. In addition, S2A RNAP II showed an impaired recruitment of the cleavage factor PCF11 to pre-mRNA and a defect in 3'-end RNA cleavage. These results suggest that CTD Ser2 plays critical roles in co-transcriptional pre-mRNA maturation in vivo: It likely recruits U2AF65 to ensure an efficient co-transcriptional splicing and facilitates the recruitment of pre-mRNA 3'-end processing factors to enhance 3'-end cleavage.


Assuntos
Processamento de Terminações 3' de RNA , RNA Polimerase II/química , Splicing de RNA , Serina/fisiologia , Alanina , Substituição de Aminoácidos , Linhagem Celular , Humanos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Clivagem do RNA , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
19.
Transcription ; 2(3): 103-108, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21922053

RESUMO

This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.

20.
Mol Biol Cell ; 22(6): 858-67, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21233287

RESUMO

The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA-processing (MRP) RNA, pyrimidine tract-binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA-containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)-PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA-protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC.


Assuntos
Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Substâncias Macromoleculares/metabolismo , Proteínas Mitocondriais/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Mitocondrial , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...