Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 52, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195581

RESUMO

The Mediterranean Sea has been sampled irregularly by research vessels in the past, mostly by national expeditions in regional waters. To monitor the hydrographic, biogeochemical and circulation changes in the Mediterranean Sea, a systematic repeat oceanographic survey programme called Med-SHIP was recommended by the Mediterranean Science Commission (CIESM) in 2011, as part of the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). Med-SHIP consists of zonal and meridional surveys with different frequencies, where comprehensive physical and biogeochemical properties are measured with the highest international standards. The first zonal survey was done in 2011 and repeated in 2018. In addition, a network of meridional (and other key) hydrographic sections were designed: the first cycle of these sections was completed in 2016, with three cruises funded by the EU project EUROFLEETS2. This paper presents the physical and chemical data of the meridional and key transects in the Western and Eastern Mediterranean Sea collected during those cruises.

2.
Sci Rep ; 10(1): 1905, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024877

RESUMO

Under the emerging features of interannual-to-decadal ocean variability, the periodical reversals of the North Ionian Gyre (NIG), driven mostly by the mechanism named Adriatic-Ionian Bimodal Oscillating System (BiOS), are known as impacting on marine physics and biogeochemistry and potentially influencing short-term regional climate predictability in the Eastern Mediterranean. Whilst it has been suggested that local wind forcing cannot explain such variability, aspects of the alternative hypothesis indicating that NIG reversals mainly arises from an internal ocean feedback mechanism alone remain largely debated. Here we demonstrate, using the results of physical experiments, performed in the world's largest rotating tank and numerical simulations, that the main observed feature of BiOS, i.e., the switch of polarity of the near-surface circulation in the NIG, can be induced by a mere injection of dense water on a sloping bottom. Hence, BiOS is a truly oceanic mode of variability and abrupt polarity changes in circulation can arise solely from extreme dense water formation events.

3.
Sci Rep ; 8(1): 11317, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054494

RESUMO

The heat contained in the ocean (OHC) dominates the Earth's energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2 - twice that assessed globally in the same period - exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column.

4.
PLoS One ; 11(1): e0145299, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761666

RESUMO

We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements.


Assuntos
Bactérias/metabolismo , Biodiversidade , Oceanos e Mares , Movimentos da Água , Geografia , Região do Mediterrâneo , Isótopos de Oxigênio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...