Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 633643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796028

RESUMO

BACKGROUND: There is debate whether human atrial fibrillation is driven by focal drivers or multiwavelet reentry. We propose that the changing activation sequences surrounding a focal driver can at times self-sustain in the absence of that driver. Further, the relationship between focal drivers and surrounding chaotic activation is bidirectional; focal drivers can generate chaotic activation, which may affect the dynamics of focal drivers. METHODS AND RESULTS: In a propagation model, we generated tissues that support structural micro-reentry and moving functional reentrant circuits. We qualitatively assessed (1) the tissue's ability to support self-sustaining fibrillation after elimination of the focal driver, (2) the impact that structural-reentrant substrate has on the duration of fibrillation, the impact that micro-reentrant (3) frequency, (4) excitable gap, and (5) exposure to surrounding fibrillation have on micro-reentry in the setting of chaotic activation, and finally the likelihood fibrillation will end in structural reentry based on (6) the distance between and (7) the relative lengths of an ablated tissue's inner and outer boundaries. We found (1) focal drivers produced chaotic activation when waves encountered heterogeneous refractoriness; chaotic activation could then repeatedly initiate and terminate micro-reentry. Perpetuation of fibrillation following elimination of micro-reentry was predicted by tissue properties. (2) Duration of fibrillation was increased by the presence of a structural micro-reentrant substrate only when surrounding tissue had a low propensity to support self-sustaining chaotic activation. Likelihood of micro-reentry around the structural reentrant substrate increased as (3) the frequency of structural reentry increased relative to the frequency of fibrillation in the surrounding tissue, (4) the excitable gap of micro-reentry increased, and (5) the exposure of the structural circuit to the surrounding tissue decreased. Likelihood of organized tachycardia following termination of fibrillation increased with (6) decreasing distance and (7) disparity of size between focal obstacle and external boundary. CONCLUSION: Focal drivers such as structural micro-reentry and the chaotic activation they produce are continuously interacting with one another. In order to accurately describe cardiac tissue's propensity to support fibrillation, the relative characteristics of both stationary and moving drivers must be taken into account.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26962094

RESUMO

BACKGROUND: Treatment of multiwavelet reentry (MWR) remains difficult. We previously developed a metric, the fibrillogenicity index, to assess the propensity of homogeneous, 2-dimensional tissues to support MWR. In this study, we demonstrate a method by which fibrillogenicity index can be generalized to heterogeneous tissues and validate an algorithm for prospective, tissue-specific optimization of ablation to reduce MWR burden. METHODS AND RESULTS: We used a computational model to simulate and measure the duration of MWR in tissues with heterogeneously distributed action potential durations and then assessed the relative efficacy of a variety of ablation strategies for reducing tissues' ability to support MWR. We then derived and tested a strategy in which multiple linear lesions partially divided a fibrillogenic tissue into functionally equivalent subsections. The composite action potential duration of heterogeneous tissue was well approximated by an inverse sum of cellular action potential durations (R(2)=0.82). Linear ablation more efficiently reduced MWR duration than branching ablation patterns and optimally reduced disease burden when positioned at a tissue's functional (rather than geometric) center. The duration of MWR after application of prospective, individually optimized ablation sets fell within 4.4% (95% confidence interval, 3-5.8) of the predicted target. CONCLUSIONS: We think that this study presents a novel approach for (1) quantifying the extent of a tissue's electric derangement, (2) prospectively determining the amount of ablation required to minimize the burden of MWR, and (3) predicting the most efficient distribution of these ablation lesions in tissue refractory to standard ablation strategies.


Assuntos
Algoritmos , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Sistema de Condução Cardíaco/cirurgia , Potenciais de Ação , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Simulação por Computador , Técnicas de Apoio para a Decisão , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Humanos , Cinética , Modelos Cardiovasculares , Seleção de Pacientes , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
PLoS One ; 10(3): e0118746, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25768978

RESUMO

The goal of this study was to determine quantitative relationships between electrophysiologic parameters and the propensity of cardiac tissue to undergo atrial fibrillation. We used a computational model to simulate episodes of fibrillation, which we then characterized in terms of both their duration and the population dynamics of the electrical waves which drove them. Monte Carlo sampling revealed that episode durations followed an exponential decay distribution and wave population sizes followed a normal distribution. Half-lives of reentrant episodes increased exponentially with either increasing tissue area to boundary length ratio (A/BL) or decreasing action potential duration (APD), resistance (R) or capacitance (C). We found that the qualitative form of fibrillatory activity (e.g., multi-wavelet reentry (MWR) vs. rotors) was dependent on the ratio of resistance and capacitance to APD; MWR was reliably produced below a ratio of 0.18. We found that a composite of these electrophysiologic parameters, which we term the fibrillogenicity index (Fb = A/(BL*APD*R*C)), reliably predicted the duration of MWR episodes (r2 = 0.93). Given that some of the quantities comprising Fb are amenable to manipulation (via either pharmacologic treatment or catheter ablation), these findings provide a theoretical basis for the development of titrated therapies of atrial fibrillation.


Assuntos
Fibrilação Atrial/fisiopatologia , Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Animais , Coração/fisiopatologia , Humanos , Probabilidade
4.
Europace ; 16 Suppl 4: iv102-iv109, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25362159

RESUMO

AIMS: A key mechanism responsible for atrial fibrillation is multi-wavelet reentry (MWR). We have previously demonstrated that ablation in regions of increased circuit density reduces the duration of, and decreases the inducibility of MWR. In this study, we demonstrate a method for identifying local circuit density using electrogram frequency and validated its effectiveness for map-guided ablation in a computer model of MWR. METHODS AND RESULTS: We simulated MWR in tissues with variation of action potential duration and intercellular resistance. Electrograms were calculated using various electrode sizes and configurations. We measured and compared the number of circuits to the tissue activation frequency and electrogram frequency using three recording configurations [unipolar, contact bipolar, orthogonal closed unipolar (OCU)] and two frequency measurements (dominant frequency, centroid frequency). We then used the highest resolution electrogram frequency map (OCU centroid frequency) to guide the placement of lesions to high frequency regions. Map-guided ablation was compared with no ablation and random/blind ablation lesions of equal length. Electrogram frequency correlated with tissue frequency and circuit density as a function of electrode spatial resolution. Map-guided ablation resulted in a significant reduction in MWR duration (142 ± 174 vs. 41 ± 63 s). CONCLUSION: Electrogram frequency correlates with circuit density in MWR provided electrodes have high spatial resolution. Map-guided ablation is superior to no ablation and to blind/random ablation.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/cirurgia , Sistema de Condução Cardíaco/cirurgia , Cirurgia Assistida por Computador/métodos , Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Simulação por Computador , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Modelos Cardiovasculares , Valor Preditivo dos Testes , Fatores de Tempo , Resultado do Tratamento
5.
Europace ; 14 Suppl 5: v106-v111, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23104906

RESUMO

AIMS: Catheter ablation strategies for treatment of cardiac arrhythmias are quite successful when targeting spatially constrained substrates. Complex, dynamic, and spatially varying substrates, however, pose a significant challenge for ablation, which delivers spatially fixed lesions. We describe tissue excitation using concepts of surface topology which provides a framework for addressing this challenge. The aim of this study was to test the efficacy of mechanism-based ablation strategies in the setting of complex dynamic substrates. METHODS AND RESULTS: We used a computational model of propagation through electrically excitable tissue to test the effects of ablation on excitation patterns of progressively greater complexity, from fixed rotors to multi-wavelet re-entry. Our results indicate that (i) focal ablation at a spiral-wave core does not result in termination; (ii) termination requires linear lesions from the tissue edge to the spiral-wave core; (iii) meandering spiral-waves terminate upon collision with a boundary (linear lesion or tissue edge); (iv) the probability of terminating multi-wavelet re-entry is proportional to the ratio of total boundary length to tissue area; (v) the efficacy of linear lesions varies directly with the regional density of spiral-waves. CONCLUSION: We establish a theoretical framework for re-entrant arrhythmias that explains the requirements for their successful treatment. We demonstrate the inadequacy of focal ablation for spatially fixed spiral-waves. Mechanistically guided principles for ablating multi-wavelet re-entry are provided. The potential to capitalize upon regional heterogeneity of spiral-wave density for improved ablation efficacy is described.


Assuntos
Potenciais de Ação , Sistema de Condução Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/cirurgia , Modelos Cardiovasculares , Cirurgia Assistida por Computador/métodos , Taquicardia Reciprocante/fisiopatologia , Taquicardia Reciprocante/cirurgia , Animais , Simulação por Computador , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...