Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106039

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, but a comprehensive description of its genomic landscape is lacking. We report the whole genome sequencing of 778 ccRCC patients enrolled in the 100,000 Genomes Project, providing the most detailed somatic mutational landscape to date. We identify new driver genes, which as well as emphasising the major role of epigenetic regulation in ccRCC highlight additional biological pathways extending opportunities for drug repurposing. Genomic characterisation identified patients with divergent clinical outcome; higher number of structural copy number alterations associated with poorer prognosis, whereas VHL mutations were independently associated with a better prognosis. The twin observations that higher T-cell infiltration is associated with better outcome and that genetically predicted immune evasion is not common supports the rationale for immunotherapy. These findings should inform personalised surveillance and treatment strategies for ccRCC patients.

2.
Nature ; 616(7957): 525-533, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046096

RESUMO

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/genética , Filogenia , Resultado do Tratamento , Fumar/genética , Fumar/fisiopatologia , Mutagênese , Variações do Número de Cópias de DNA
3.
Nature ; 597(7877): 555-560, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497419

RESUMO

The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31-32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/citologia , Linfócitos T/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Ácido Aspártico Endopeptidases/genética , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Sequenciamento do Exoma/economia
4.
Cell ; 184(3): 596-614.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508232

RESUMO

Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biomarcadores Tumorais/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Amplificação de Genes , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Análise Multivariada , Mutação/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Carga Tumoral/genética
5.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355129

RESUMO

Mitochondria drive cellular adaptation to stress by retro-communicating with the nucleus. This process is known as mitochondrial retrograde response (MRR) and is induced by mitochondrial dysfunction. MRR results in the nuclear stabilization of prosurvival transcription factors such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we demonstrate that MRR is facilitated by contact sites between mitochondria and the nucleus. The translocator protein (TSPO) by preventing the mitophagy-mediated segregation o mitochonria is required for this interaction. The complex formed by TSPO with the protein kinase A (PKA), via the A-kinase anchoring protein acyl-CoA binding domain containing 3 (ACBD3), established the tethering. The latter allows for cholesterol redistribution of cholesterol in the nucleus to sustain the prosurvival response by blocking NF-κB deacetylation. This work proposes a previously unidentified paradigm in MRR: the formation of contact sites between mitochondria and nucleus to aid communication.

6.
EMBO Rep ; 21(9): e48260, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32783398

RESUMO

IκB kinase ε (IKKε) is a key molecule at the crossroads of inflammation and cancer. Known to regulate cytokine secretion via NFκB and IRF3, the kinase is also a breast cancer oncogene, overexpressed in a variety of tumours. However, to what extent IKKε remodels cellular metabolism is currently unknown. Here, we used metabolic tracer analysis to show that IKKε orchestrates a complex metabolic reprogramming that affects mitochondrial metabolism and consequently serine biosynthesis independently of its canonical signalling role. We found that IKKε upregulates the serine biosynthesis pathway (SBP) indirectly, by limiting glucose-derived pyruvate utilisation in the TCA cycle, inhibiting oxidative phosphorylation. Inhibition of mitochondrial function induces activating transcription factor 4 (ATF4), which in turn drives upregulation of the expression of SBP genes. Importantly, pharmacological reversal of the IKKε-induced metabolic phenotype reduces proliferation of breast cancer cells. Finally, we show that in a highly proliferative set of ER negative, basal breast tumours, IKKε and PSAT1 are both overexpressed, corroborating the link between IKKε and the SBP in the clinical context.


Assuntos
Neoplasias da Mama , Quinase I-kappa B , Mitocôndrias , Serina/biossíntese , Neoplasias da Mama/genética , Feminino , Humanos , Quinase I-kappa B/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oncogenes/genética
7.
EMBO Mol Med ; 12(2): e10491, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930708

RESUMO

During obesity, macrophages infiltrate the breast tissue leading to low-grade chronic inflammation, a factor considered responsible for the higher risk of breast cancer associated with obesity. Here, we formally demonstrate that breast epithelial cells acquire malignant properties when exposed to medium conditioned by macrophages derived from human healthy donors. These effects were mediated by the breast cancer oncogene IKKε and its downstream target-the serine biosynthesis pathway as demonstrated by genetic or pharmacological tools. Furthermore, amlexanox, an FDA-approved drug targeting IKKε and its homologue TBK1, delayed in vivo tumour formation in a combined genetic mouse model of breast cancer and high-fat diet-induced obesity/inflammation. Finally, in human breast cancer tissues, we validated the link between inflammation-IKKε and alteration of cellular metabolism. Altogether, we identified a pathway connecting obesity-driven inflammation to breast cancer and a potential therapeutic strategy to reduce the risk of breast cancer associated with obesity.


Assuntos
Neoplasias da Mama/patologia , Quinase I-kappa B , Macrófagos/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Serina , Aminopiridinas/farmacologia , Animais , Meios de Cultivo Condicionados , Células Epiteliais/patologia , Feminino , Humanos , Quinase I-kappa B/metabolismo , Inflamação , Glândulas Mamárias Humanas/patologia , Camundongos , Obesidade , Serina/biossíntese
8.
Methods Mol Biol ; 1928: 469-478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725470

RESUMO

Transcription of a large set of nuclear-encoded genes underlies biogenesis of mitochondria, regulated by a complex network of transcription factors and co-regulators. A remarkable heterogeneity can be detected in the expression of these genes in different cell types and tissues, and the recent availability of large gene expression compendiums allows the quantification of specific mitochondrial biogenesis patterns. We have developed a method to effectively perform this task. Massively correlated biclustering (MCbiclust) is a novel bioinformatics method that has been successfully applied to identify co-regulation patterns in large genesets, underlying essential cellular functions and determining cell types. The method has been recently evaluated and made available as a package in Bioconductor for R. One of the potential applications of the method is to compare expression of nuclear-encoded mitochondrial genes or larger sets of metabolism-related genes between different cell types or cellular metabolic states. Here we describe the essential steps to use MCbiclust as a tool to investigate co-regulation of mitochondrial genes and metabolic pathways.


Assuntos
Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Mitocondriais , Mitocôndrias/metabolismo , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Redes e Vias Metabólicas
9.
Hum Mol Genet ; 27(13): 2367-2382, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29701772

RESUMO

Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/genética , Mitocôndrias/genética , Doenças Musculares/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Sinalização do Cálcio/genética , Regulação da Expressão Gênica , Humanos , Inositol/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação
10.
Nucleic Acids Res ; 45(15): 8712-8730, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911113

RESUMO

The potential to understand fundamental biological processes from gene expression data has grown in parallel with the recent explosion of the size of data collections. However, to exploit this potential, novel analytical methods are required, capable of discovering large co-regulated gene networks. We found current methods limited in the size of correlated gene sets they could discover within biologically heterogeneous data collections, hampering the identification of multi-gene controlled fundamental cellular processes such as energy metabolism, organelle biogenesis and stress responses. Here we describe a novel biclustering algorithm called Massively Correlated Biclustering (MCbiclust) that selects samples and genes from large datasets with maximal correlated gene expression, allowing regulation of complex networks to be examined. The method has been evaluated using synthetic data and applied to large bacterial and cancer cell datasets. We show that the large biclusters discovered, so far elusive to identification by existing techniques, are biologically relevant and thus MCbiclust has great potential in the analysis of transcriptomics data to identify large-scale unknown effects hidden within the data. The identified massive biclusters can be used to develop improved transcriptomics based diagnosis tools for diseases caused by altered gene expression, or used for further network analysis to understand genotype-phenotype correlations.


Assuntos
Algoritmos , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação da Expressão Gênica , Genes Reguladores , Estudos de Associação Genética/métodos , Estudos de Associação Genética/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Fenótipo
11.
EMBO Mol Med ; 8(5): 569-85, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27138568

RESUMO

Triple-negative breast cancer (TNBC) represents the most aggressive breast tumor subtype. However, the molecular determinants responsible for the metastatic TNBC phenotype are only partially understood. We here show that expression of the mitochondrial calcium uniporter (MCU), the selective channel responsible for mitochondrial Ca(2+) uptake, correlates with tumor size and lymph node infiltration, suggesting that mitochondrial Ca(2+) uptake might be instrumental for tumor growth and metastatic formation. Accordingly, MCU downregulation hampered cell motility and invasiveness and reduced tumor growth, lymph node infiltration, and lung metastasis in TNBC xenografts. In MCU-silenced cells, production of mitochondrial reactive oxygen species (mROS) is blunted and expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced, suggesting a signaling role for mROS and HIF-1α, downstream of mitochondrial Ca(2+) Finally, in breast cancer mRNA samples, a positive correlation of MCU expression with HIF-1α signaling route is present. Our results indicate that MCU plays a central role in TNBC growth and metastasis formation and suggest that mitochondrial Ca(2+) uptake is a potential novel therapeutic target for clinical intervention.


Assuntos
Canais de Cálcio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Invasividade Neoplásica , Metástase Neoplásica/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Inativação Gênica , Xenoenxertos , Humanos , Camundongos SCID , Espécies Reativas de Oxigênio/metabolismo
12.
Sci Rep ; 3: 2467, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23959064

RESUMO

The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.


Assuntos
Angiotensina II/farmacologia , Angiotensina II/farmacocinética , Mitocôndrias Hepáticas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Células Cultivadas , Mitocôndrias Hepáticas/efeitos dos fármacos , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...