Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Econ Entomol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625049

RESUMO

3-Hydroxyhexan-2-one (3-C6-ketol) has emerged as the most conserved pheromone structure within the beetle family Cerambycidae. In this study, we report the sex-specific production of this compound by males of 12 species of South American cerambycid beetles. Males of Chrysoprasis chalybea Redtenbacher and Mallosoma zonatum (Sahlberg) (Tribe Dichophyiini), and Ambonus lippus (Germar), Eurysthea hirta (Kirby), Pantonyssus nigriceps Bates, Stizocera plicicollis (Germar), and Stizocera tristis (Guérin-Méneville) (Elaphidiini) produced 3R-C6-ketol as a single component, whereas males of Neoclytus pusillus (Laporte & Gory) (Clytini), Aglaoschema concolor (Gounelle), Orthostoma abdominale (Gyllenhal) (Compsocerini), Dorcacerus barbatus (Olivier), and Retrachydes thoracicus thoracicus (Olivier) (Trachyderini) produced 3R-C6-ketol, along with lesser amounts of other compounds. In field trials testing 8 known cerambycid pheromone compounds, C. chalybea, E. hirta, and R. t. thoracicus were attracted in significant numbers to traps baited with 3-C6-ketol. A second field experiment provided support for the strategy of using the attraction of cerambycid species to test lures as a method of providing leads to their likely pheromone components. Because both sexes are attracted to these aggregation-sex pheromones, live beetles can be obtained from baited traps to verify they produce the compound(s) to which they were attracted, that is, that the compounds are indeed pheromone components.

2.
Sci Rep ; 14(1): 455, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172384

RESUMO

The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Rhizobiaceae , Atrativos Sexuais , Wolbachia , Feminino , Masculino , Animais , Hemípteros/fisiologia , Atrativos Sexuais/farmacologia , Brasil , Citrus/microbiologia , Rhizobiaceae/fisiologia , Acetatos , Doenças das Plantas/microbiologia
3.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994626

RESUMO

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Assuntos
Solanum lycopersicum , Solanum , Animais , Polinização , Flores , Plantas , Pólen , Solo
4.
J Chem Ecol ; 49(11-12): 696-709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875650

RESUMO

Co-infestations by herbivores, a common situation found in natural settings, can distinctly affect induced plant defenses compared to single infestations. Related tritrophic interactions might be affected through the emission of changed blends of herbivore-induced plant volatiles (HIPVs). In a previous study, we observed that the infestation by red spider mite (Oligonychus ilicis) on coffee plants facilitated the infestation by white mealybug (Planococcus minor), whereas the reverse sequence of infestation did not occur. Here, we examined the involvement of the jasmonate and salicylate pathways in the plant-mediated asymmetrical facilitation between red spider mites and white mealybugs as well as the effect of multiple herbivory on attractiveness to the predatory mite Euseius concordis and the ladybug Cryptolaemus montrouzieri. Both mite and mealybug herbivory led to the accumulation of JA-Ile, JA, and cis-OPDA in plants, although the catabolic reactions of JA-Ile were specifically regulated by each herbivore. Infestation by mites or mealybugs induced the release of novel volatiles by coffee plants, which selectively attracted their respective predators. Even though the co-infestation by mites and mealybugs resulted in a stronger accumulation of JA-Ile, JA and SA than the single infestation treatments, the volatile emission was similar to that of mite-infested or mealybug-infested plants. However, multiple infestation had a negative impact on the attractiveness of HIPVs to the predators, making them less attractive to the predatory mite and a repellent to the ladybug. We discuss the potential underlying mechanisms of the susceptibility induced by mites, and the effect of multiple infestation on each predator.


Assuntos
Coffea , Tetranychidae , Animais , Herbivoria , Café , Ciclopentanos/metabolismo
5.
Ecol Evol ; 13(8): e10416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575593

RESUMO

Abiotic factors strongly influence ecological interactions and the spatial distribution of organisms. Despite the essential role of barometric pressure, its influence on insect behaviour remains poorly understood, particularly in predators. The effect of barometric pressure variation can significantly impact biological control programs involving entomophagous insects, as they must efficiently allocate time and energy to search for prey in challenging environments. We investigated how predatory insects from different taxonomic groups (Coleoptera, Dermaptera and Neuroptera) adapt their foraging behaviour in response to variations in barometric pressure (low, medium and high). We also examined the response of different life stages to changes in pressure regimes during foraging activities. Our results showed that the searching time of Doru luteipes (Dermaptera: Forficulidae) was faster in a favourable high-pressure regime, whereas Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae) had similar searching times under varying pressure regimes. Although no differences in prey feeding time were observed among the studied species, the consumption rate was influenced by low barometric pressure leading to a decrease in the number of preyed eggs. Moreover, we provide novel insights into how hemimetabolous (D. luteipes) and holometabolous (E. connexa) species at different life stages respond to barometric pressure. Doru luteipes nymphs and adults had similar consumption rates across all pressure regimes tested, whereas E. connexa larvae consumed fewer eggs under low barometric pressure, but adults were unaffected. This highlights the importance of investigating how abiotic factors affect insects foraging efficiency and predator-prey interactions. Such studies are especially relevant in the current context of climate change, as even subtle changes in abiotic factors can have strong effects on insect behaviour. Barometric pressure is a key meteorological variable that serve as a warning signal for insects to seek shelter and avoid exposure to weather events that could potentially increase their mortality. Understanding the effects of barometric pressure on predatory insects' behaviour can help us develop more effective pest management strategies and promote the resilience of agroecosystems. We provide new insights into the complex relationship between barometric pressure and predator-prey interactions.

6.
Planta ; 257(4): 76, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894799

RESUMO

MAIN CONCLUSION: Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.


Assuntos
Mariposas , Solanum lycopersicum , Solanum , Animais , Herbivoria , Larva , Nitrogênio
7.
Sci Data ; 10(1): 99, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823157

RESUMO

Biomedical datasets are increasing in size, stored in many repositories, and face challenges in FAIRness (findability, accessibility, interoperability, reusability). As a Consortium of infectious disease researchers from 15 Centers, we aim to adopt open science practices to promote transparency, encourage reproducibility, and accelerate research advances through data reuse. To improve FAIRness of our datasets and computational tools, we evaluated metadata standards across established biomedical data repositories. The vast majority do not adhere to a single standard, such as Schema.org, which is widely-adopted by generalist repositories. Consequently, datasets in these repositories are not findable in aggregation projects like Google Dataset Search. We alleviated this gap by creating a reusable metadata schema based on Schema.org and catalogued nearly 400 datasets and computational tools we collected. The approach is easily reusable to create schemas interoperable with community standards, but customized to a particular context. Our approach enabled data discovery, increased the reusability of datasets from a large research consortium, and accelerated research. Lastly, we discuss ongoing challenges with FAIRness beyond discoverability.


Assuntos
Doenças Transmissíveis , Conjuntos de Dados como Assunto , Metadados , Reprodutibilidade dos Testes , Conjuntos de Dados como Assunto/normas , Humanos
8.
Naturwissenschaften ; 110(1): 3, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700962

RESUMO

Cyclocephaline beetles are flower visitors attracted primarily by major floral volatiles. Addressing the identity of these volatile compounds is pivotal for understanding the evolution of plant-beetle interactions. We report the identification and field testing of the attractant volatiles from trumpet flowers, Brugmansia suaveolens (Willd.) Sweet (Solanaceae), for the beetle Cyclocephala paraguayensis Arrow (Melolonthidae: Dynastinae). Analysis of headspace floral volatiles revealed 19 compounds, from which eucalyptol (57%), methyl benzoate (16%), and ß-myrcene (6%) were present in the largest amounts, whereas E-nerolidol in much lesser amounts (1.8%). During a first-field assay, traps baited with Mebe alone or blended with the other two major compounds attracted more beetles than myrcene and eucalyptol alone, which did not differ from the negative controls. In a second assay, Mebe and nerolidol attracted more beetles as a blend than individually. Nerolidol was more attractive than Mebe, and all treatments attracted more beetles than negative controls. The number of attracted beetles in the Mebe-nerolidol blend was greater than the combined sum of beetles attracted to these compounds alone, suggesting a synergistic interaction. The attraction of C. paraguayensis by trumpet-flower volatiles supports the beetle's extended preference for sphingophilous plants, especially when cantharophilous (beetle-pollinated) flowers are lacking. This phenomenon, thus, might have contributed to the widespread occurrence of this beetle throughout the Brazilian biomes.


Assuntos
Besouros , Solanaceae , Animais , Eucaliptol , Flores , Feromônios
9.
J Chem Ecol ; 48(5-6): 569-582, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35501536

RESUMO

A novel trisubstituted tetrahydropyran was isolated and identified from the sex-specific volatiles produced by males of the cerambycid beetle Macropophora accentifer (Olivier), a serious pest of citrus and other fruit crops in South America. The compound was the major component in the headspace volatiles, and it was synthesized in racemic form. However, in field trials, the racemate was only weakly attractive to beetles of both sexes, suggesting that attraction might be inhibited by the presence of the "unnatural" enantiomer in the racemate. Alternatively, the male-produced volatiles contained a number of minor and trace components, including a compound tentatively identified as a homolog of the major component, as well as a number of unsaturated 8-carbon alcohols and aldehydes. Further work is required to conclusively identify and synthesize these minor components, to determine whether one or more of them are crucial components of the active pheromone blend for this species.


Assuntos
Besouros , Atrativos Sexuais , Aranhas , Aldeídos , Animais , Feminino , Masculino , Feromônios , Atrativos Sexuais/farmacologia
10.
iScience ; 25(4): 104079, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35359802

RESUMO

Mathematical models have many applications in infectious diseases: epidemiologists use them to forecast outbreaks and design containment strategies; systems biologists use them to study complex processes sustaining pathogens, from the metabolic networks empowering microbial cells to ecological networks in the microbiome that protects its host. Here, we (1) review important models relevant to infectious diseases, (2) draw parallels among models ranging widely in scale. We end by discussing a minimal set of information for a model to promote its use by others and to enable predictions that help us better fight pathogens and the diseases they cause.

11.
Pest Manag Sci ; 78(8): 3314-3323, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35485909

RESUMO

BACKGROUND: Plant defenses activated by European zoophytophagous predators trigger behavioral responses in arthropods, benefiting pest management. However, repellence or attraction of pests and beneficial insects seems to be species-specific. In the neotropical region, the mirid predator Macrolophus basicornis has proved to be a promising biological control agent of important tomato pests; nevertheless, the benefits of its phytophagous behavior have never been explored. Therefore, we investigated if M. basicornis phytophagy activates tomato plant defenses and the consequences for herbivores and natural enemies. RESULTS: Regardless of the induction period of M. basicornis on tomato plants, Tuta absoluta females showed no preference for the odors emitted by induced or control plants. However, Tuta absoluta oviposited less on plants induced by M. basicornis for 72 h than on control plants. In contrast, induced plants repelled Bemisia tabaci females, and the number of eggs laid was reduced. Although females of Trichogramma pretiosum showed no preference between mirid-induced or control plants, we observed high attraction of the parasitoid Encarsia inaron and conspecifics to plants induced by M. basicornis. While the mirid-induced plants down-regulated the expression of genes involving the salicylic acid (SA) pathway over time, the genes related to the jasmonic acid (JA) pathway were up-regulated, increasing emissions of fatty-acid derivatives and terpenes, which might have influenced the arthropods' host/prey choices. CONCLUSION: Based on both the molecular and behavioral findings, our results indicated that in addition to predation, M. basicornis benefits tomato plant resistance indirectly through its phytophagy. This study is a starting point to pave the way for a novel and sustainable pest-management strategy in the neotropical region. © 2022 Society of Chemical Industry.


Assuntos
Heterópteros , Lepidópteros , Solanum lycopersicum , Animais , Feminino , Herbivoria , Heterópteros/fisiologia , Solanum lycopersicum/metabolismo , Controle Biológico de Vetores , Comportamento Predatório
12.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35333339

RESUMO

Some pathogens can manipulate their host plants and insects to optimize their fitness, increasing the attraction of insects to the infected plant in ways that facilitate pathogen acquisition. In tropical American sugarcane crops, the fungus Colletotrichum falcatum, the red rot causal agent, usually occurs in association with the sugarcane borer Diatraea saccharalis, resulting in large losses of this crop. Considering this association, we aimed to identify the effects of C. falcatum on D. saccharalis host preference and performance as well as the effect of this insect on C. falcatum sugarcane infection. Here, we show that the fungus C. falcatum modulates D. saccharalis behavior to its own benefit. More specifically, C. falcatum-infected sugarcane plants showed a dramatic increase in VOCs, luring D. saccharalis females to lay eggs on these plants. Therefore, sugarcane infection by the fungus C. falcatum increased in cooccurrence with insect herbivory, benefiting the pathogen when associated with D. saccharalis.


Assuntos
Colletotrichum , Mariposas , Saccharum , Animais , Grão Comestível , Feminino , Insetos , Saccharum/microbiologia
13.
Chemosphere ; 287(Pt 2): 132147, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34492415

RESUMO

Pathogenic fungi have been used worldwide to control crop pests and are assumed to pose negligible threats to the survival of pollinators. Although eusocial stingless bees provide essential pollination services and might be exposed to these biopesticides in tropical agroecosystems, there is a substantial knowledge gap regarding the side effects of fungal pathogens on behavioural traits that are crucial for colony functioning, such as guarding behaviour. Here, we evaluated the effect of Beauveria bassiana on the sophisticated kin recognition system of Tetragonisca angustula, a bee with morphologically specialized entrance guards. By combining behavioural assays and chemical analyses, we show that guards detect pathogen-exposed nestmates, preventing them from accessing nests. Furthermore, cuticular profiles of pathogen-exposed foragers contained significantly lower amounts of linear alkanes than the unexposed ones. Such chemical cues associated with fungal conidia may potentially trigger aggression towards pathogen-exposed bees, preventing pathogen spread into and among colonies. This is the first demonstration that this highly abundant native bee seems to respond in a much more adaptive way to a potentially infectious threat, outweighing the costs of losing foraging workforce when reducing the chances of fungal pathogen outbreaks within their colonies, than honeybees do.


Assuntos
Agentes de Controle Biológico , Comportamento de Nidação , Alcanos , Animais , Abelhas , Fungos , Polinização
14.
Rev. bras. entomol ; 66(3): e20220016, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1407490

RESUMO

ABSTRACT The garden fleahopper, Microtechnites bractatus (Say) (Hemiptera: Miridae), is associated with several cultivated plant species and, despite its economic importance, little is known about its development and performance in such hosts. We described here, the morphology of immature stages, and evaluated the biology of M. bractatus in beans, potatoes, white clover, alfalfa, and wheat. The bioassays were carried out in the laboratory under controlled temperature (25±2ºC), humidity (UR70±15%), and photoperiod (12L:12D). The eggs of M. bractatus are elongated and slightly curved, without respiratory projections and light yellow in color, becoming dark at the end of the incubation period. Nymphs present an oval-shaped body, a reddish color that intensifies along with the development and dimorphic wing pads in the fifth instar. In the bioassays, the host plants influenced the biological aspects of M. bractatus, both in the immature and adult stages. Nymph survival was higher in clover and alfalfa, while in wheat, it was lower. Clover-fed insects had the longest longevity. The fecundity parameters and egg viability were favored in insects that fed on clover and alfalfa. The fertility life table showed that feeding M. bractatus with clover provides a higher net reproduction rate (R0) and a higher finite ratio of population increase (ʎ). This study contributes to bioecological and behavioral studies on M. bractatus and provides data for the recognition and characterization of individuals in the immature stage.

15.
Naturwissenschaften ; 109(1): 9, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913094

RESUMO

The use of nectar-producing companion plants in crops is a well-known strategy of conserving natural enemies in biological control. However, the role of floral volatiles in attracting parasitoids and effects on host location via herbivore-induced plant volatiles is poorly known. Here, we examined the role of floral volatiles from marigold (Tagetes erecta), alone or in combination with volatiles from sweet pepper plant (Capsicum annuum), in recruiting Aphidius platensis, an important parasitoid of the green peach aphid Myzus persicae. We also investigated whether marigold floral volatiles are more attractive to the parasitoid than those emitted by sweet pepper plants infested by M. persicae. Olfactometry assays indicated that floral volatiles attracted A. platensis to the marigold plant and are more attractive than sweet pepper plant volatiles. However, volatiles emitted by aphid-infested sweet pepper were as attractive to the parasitoid as those of uninfested or aphid-infested blooming marigold. The composition of volatile blends released by uninfested and aphid-infested plants differed between both blooming marigold and sweet pepper, but the parasitoid did not discriminate aphid-infested from uninfested blooming marigold. Volatile released from blooming marigold and sweet pepper shared several compounds, but that of blooming marigold contained larger amounts of fatty-acid derivatives and a different composition of terpenes. We discuss the potential implications of the aphid parasitoid attraction in a diversified crop management strategy.


Assuntos
Afídeos , Himenópteros , Tagetes , Compostos Orgânicos Voláteis , Animais , Herbivoria , Interações Hospedeiro-Parasita , Néctar de Plantas
16.
J Chem Ecol ; 47(12): 941-949, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34532812

RESUMO

Here, we study the pheromone chemistry of two South American cerambycid beetle species, and their behavioral responses to candidate pheromone components. Adult males of Stizocera phtisica Gounelle (subfamily Cerambycinae: tribe Elaphidiini) produced a sex-specific blend of (R)-3-hydroxyhexan-2-one with lesser amounts of 3-methylthiopropan-1-ol. In field bioassays, traps baited with racemic 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol did not catch conspecific beetles, but did catch both sexes of a sympatric species, Chydarteres dimidiatus dimidiatus (F.) (Cerambycinae: Trachyderini). We found that males of this species also produce (R)-3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol, and small amounts of 2-phenylethanol. Subsequent bioassays with these compounds showed that a blend of 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol constitutes the aggregation-sex pheromone of C. d. dimidiatus, with 2-phenylethanol not influencing the attraction of conspecifics. During the field bioassays, six other species in the Cerambycinae also were caught in significant numbers, including Aglaoschema ventrale (Germar) (tribe Compsocerini), congeners Chrysoprasis aurigena (Germar), Chrysoprasis linearis Bates, and an unidentified Chrysoprasis species (Dichophyiini), and Cotyclytus curvatus (Germar) and Itaclytus olivaceus (Laporte & Gory) (both Clytini), suggesting that one or more of the compounds tested are also pheromone components for these species.


Assuntos
Besouros/efeitos dos fármacos , Feromônios/farmacologia , Animais , Besouros/fisiologia , Hexanonas/farmacologia , Masculino , América do Sul , Especificidade da Espécie
17.
Environ Microbiol Rep ; 13(6): 812-821, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34433236

RESUMO

The beneficial features of Bacillus thuringiensis (Bt) are not limited to its role as an insecticide; it is also able to promote plant growth interacting with plants and other plant growth-promoting rhizobacterium (PGPR). The PGPR Bt strain RZ2MS9 is a multi-trait maize growth promoter. We obtained a stable mutant of RZ2MS9 labelled with green fluorescent protein (RZ2MS9-GFP). We demonstrated that the Bt RZ2MS9-GFP successfully colonizes maize's roots and leaves endophytically. We evaluated whether RZ2MS9 has an additive effect on plant growth promotion when co-inoculated with Azospirillum brasilense Ab-V5. The two strains combined enhanced maize's roots and shoots dry weight around 50% and 80%, respectively, when compared to the non-inoculated control. However, non-differences were observed comparing RZ2MS9 alone and when co-inoculated with Ab-V5, In addition, we used co-inoculation experiments in glass chambers to analyse the plant's volatile organic compounds (VOCs) production during the maize-RZ2MS9 and maize-RZ2MS9-Ab-V5 interaction. We found that the single and co-inoculation altered maize's VOCs emission profile, with an increase in the production of indoles in the co-inoculation. Collectively, these results increase our knowledge about the interaction between the Bt and maize, and provide a new possibility of combined application with the commercial inoculant A. brasilense Ab-V5.


Assuntos
Azospirillum brasilense , Bacillus thuringiensis , Compostos Orgânicos Voláteis , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Bacillus thuringiensis/genética , Raízes de Plantas/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia
18.
ISME J ; 15(12): 3522-3533, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34127802

RESUMO

Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.


Assuntos
Insetos , Mariposas , Animais , Fungos , Herbivoria , Humanos , Doenças das Plantas , Plantas
19.
Pest Manag Sci ; 77(9): 4168-4180, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33938117

RESUMO

BACKGROUND: Plants in nature can be sequentially attacked by different arthropod herbivores. Feeding by one arthropod species may induce plant-defense responses that might affect the performance of a later-arriving herbivorous species. Understanding these interactions can help in developing pest-management strategies. In tomato, the sweet-potato whitefly Bemisia tabaci and the two-spotted spider mite Tetranychus urticae are key pests that frequently cohabit on the same plant. We studied whether colonization by one species can either facilitate or impede later colonization of tomato plants by conspecific or heterospecific individuals. RESULTS: B. tabaci females showed a strong preference for and increased oviposition on plants previously colonized by conspecifics. In contrast, plants infested with T. urticae repelled B. tabaci females and reduced their oviposition rate by 86%. Although females of T. urticae showed no preference between conspecific-infested or uninfested plants, we observed a 50% reduction in the number of eggs laid on conspecific-infested plants. Both herbivorous arthropods up-regulated the expression of genes involving the jasmonic acid and abscisic acid pathways, increasing emissions of fatty-acid derivatives, but only B. tabaci increased the expression of genes related to the salicylic acid pathway and the total amount of phenylpropanoids released. Terpenoids were the most abundant compounds in the volatile blends; many terpenoids were emitted at different rates, which might have influenced the arthropods' host selection. CONCLUSION: Our results indicate that B. tabaci infestation facilitated subsequent infestations by conspecifics and mites, while T. urticae infestation promoted herbivore-induced resistance. Based on both the molecular and behavioral findings, a novel sustainable pest-management strategy is discussed.


Assuntos
Artrópodes , Ácaros , Solanum lycopersicum , Tetranychidae , Animais , Feminino , Herbivoria , Humanos
20.
Environ Entomol ; 50(3): 599-604, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33724303

RESUMO

An increasing body of evidence indicates that cerambycid beetles native to different continents may share pheromone components, suggesting that these compounds arose as pheromone components early in the evolution of the family. Here, we describe the identification and field testing of the pheromone blends of two species in the subfamily Cerambycinae that share 2-nonanone as an important component of their male-produced aggregation-sex pheromones, the South American Stizocera consobrina Gounelle (tribe Elaphidiini) and the North American Heterachthes quadrimaculatus Haldeman (tribe Neoibidionini). Along with 2-nonanone, males of S. consobrina also produce 1-(1H-pyrrol-2-yl)-1,2-propanedione, whereas males of H. quadrimaculatus produce 10-methyldodecanol. Field bioassays conducted in Brazil (targeting S. consobrina) and Illinois (targeting H. quadrimaculatus) demonstrated that adults of both species were attracted only by the blends of both their pheromone components, and not to the individual components. The use of the pyrrole as a critical component for the former species is further evidence that this compound is a common pheromone structure among cerambycines in different biogeographical regions of the world.


Assuntos
Besouros , Atrativos Sexuais , Animais , Brasil , Illinois , Cetonas , Masculino , Feromônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...