Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105102, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507021

RESUMO

The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.


Assuntos
Processamento Alternativo , Sistema Nervoso Central , Receptores de Superfície Celular , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Receptor trkB/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...