Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 11(1): 40, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006850

RESUMO

BACKGROUND: Rice, a major food crop of the world, endures many major biotic stresses like bacterial blight (BB), fungal blast (BL) and the insect Asian rice gall midge (GM) that cause significant yield losses. Progress in tagging, mapping and cloning of several resistance (R) genes against aforesaid stresses has led to marker assisted multigene introgression into elite cultivars for multiple and durable resistance. However, no detailed study has been made on possible interactions among these genes when expressed simultaneously under combined stresses. RESULTS: Our studies monitored expression profiles of 14 defense related genes in 11 rice breeding lines derived from an elite cultivar with different combination of R genes against BB, BL and GM under single and multiple challenge. Four of the genes found implicated earlier under combined GM and BB stress were confirmed to be induced (≥ 2 fold) in stem tissue following GM infestation; while one of these, cytochrome P450 family protein, was also induced in leaf in plants challenged by either BB or BL but not together. Three of the genes highlighted earlier in plants challenged by both BB and BL were also found induced in stem under GM challenge. Pi54 the target R gene against BL was also found induced when challenged by GM. Though expression of some genes was noted to be inhibited under combined pest challenge, such effects did not result in compromise in resistance against any of the target pests. CONCLUSION: While R genes generally tended to respond to specific pest challenge, several of the downstream defense genes responded to multiple pest challenge either single, sequential or simultaneous, without any distinct antagonism in expression of resistance to the target pests in two of the pyramided lines RPNF05 and RPNF08.

2.
Curr Opin Insect Sci ; 19: 76-81, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28521946

RESUMO

Understanding virulence and manipulative strategies of gall formers will reveal new facets of plant defense and insect counter defense. Among the gall midges, the Asian rice gall midge (AGM) has emerged as a model for studies on plant-insect interactions. Data from several genomics, transcriptomics and metabolomics studies have revealed diverse strategies adopted by AGM to successfully invade the host while overcoming its defense. Adaptive skills of AGM transcend from its genomic and transcriptomic make-up. Information arising from studies on genetics, mitochondrial genome and miRNAs, amongst other parameters, highlights AGM's capacity to maneuver the host defense, reorient host metabolome and redirect its morphogenesis.


Assuntos
Dípteros/genética , Cadeia Alimentar , Genoma de Inseto/genética , Herbivoria , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/fisiologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Oryza/fisiologia
3.
PLoS One ; 10(7): e0134625, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226163

RESUMO

The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae) was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1) rearrangement in the order of tRNAs as well as protein coding genes; (2) truncation and unusual secondary structures of tRNAs; (3) presence of two different repeat elements in separate non-coding regions; (4) presence of one pseudo-tRNA gene; (5) inversion of the rRNA genes; (6) higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.


Assuntos
Dípteros/genética , Genes de Insetos/genética , Genoma de Inseto/genética , Mitocôndrias/genética , Sequências de Repetição em Tandem/efeitos dos fármacos , Animais , Códon de Iniciação/genética , Códon de Terminação/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico/genética , RNA de Transferência/genética , RNA não Traduzido/genética
4.
J Integr Plant Biol ; 56(9): 837-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25059749

RESUMO

The Asian rice gall midge (Orseolia oryzae Wood-Mason) is a serious pest of rice that causes huge loss in yield. While feeding inside the susceptible host, maggots secrete substances that facilitate the formation of a hollow tube-like structure called gall and prevent panicle formation. The present investigation was carried out to get an account of biochemical changes occurring in the rice plant upon gall midge feeding. Metabolic profiling of host tissues from three rice varieties, namely, TN1, Kavya, and RP2068, exposed to gall midge biotype 1 (GMB1), was carried out using gas chromatography mass spectrometry (GC-MS). TN1 and GMB1 represented compatible interaction, while Kavya and GMB1 as well as RP2068 and GMB1 represented incompatible interactions. The current study identified several metabolites that could be grouped as resistance, susceptibility, infestation, and host features based on their relative abundance. These may be regarded as biomarkers for insect-plant interaction in general and rice-gall midge interaction in particular.


Assuntos
Biomarcadores/metabolismo , Chironomidae/fisiologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Interações Hospedeiro-Parasita , Oryza/parasitologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA