Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2209329120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656857

RESUMO

The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.


Assuntos
Arginina Vasopressina , Ritmo Circadiano , Núcleo Supraquiasmático , Animais , Camundongos , Arginina , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo
2.
Elife ; 112022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149059

RESUMO

Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.


To many of us, it may seem obvious that sleep is restorative: we feel better after a good night's rest. However, exactly how sleep benefits the brain and body remains poorly understood. One clue may lie in neuropsychiatric disorders: these conditions ­ such as depression and anxiety ­ are often accompanied by disrupted sleep. Additionally, these neuropsychiatric disorders are frequently caused or worsened by stress, which can also interfere with sleep. This close association between stress and sleep has led some to hypothesize that sleep serves to overcome the adverse effects of stress on the brain, but this hypothesis remains largely untested. One type of stress that is common to all mammals is social stress, defined as stress caused by social interactions. This means that mice and other rodents can be subjected to social stress in the laboratory to test hypotheses about the effects of stress on the brain. Importantly, in both animals and humans, there are individual differences in resilience, or the ability to overcome the adverse effects of stress. Based on this information, Bush et al. set out to establish whether sleep can regulate resilience to social stress in mice. When the mice were gently kept awake during their normal sleep time, resilience decreased and so the mice were less able to overcome the negative effects of stress. Conversely, increasing sleep, by activating an area of the brain responsible for initiating sleep, increased the mice's resilience to social stress. Thus, Bush et al. showed that changes in sleep do lead to changes in resilience. To find out whether resilience can be predicted by changes in sleeping patterns, Bush et al. studied how both resilient mice and those susceptible to stress slept before and after social stress. Resilient mice would often sleep more after social stress; meanwhile, few changes were observed in susceptible mice. Surprisingly, sleep quality also predicted resilience, with resilient mice sleeping better than susceptible mice even before exposure to social stress. To determine whether the differences in sleep that predict resilience can be detected as brain activity, Bush et al. placed electrodes in two regions of the prefrontal cortex ­ a part of the brain important for decision-making and social behaviors ­ to measure how mice recovered lost sleep. This experiment revealed that the changes in sleep that predict resilience are prominent in the prefrontal cortex. Overall, Bush et al. reveal that sleeping more and sleeping better promote resilience to social stress. Furthermore, the results suggests that lack of sleep may lead to increased risk of stress-related psychiatric conditions. Humans are one of the few species that choose to deprive themselves of sleep: Bush, et al. provide evidence that this choice may have significant consequences on mental health. Furthermore, this work creates a new model that lays the groundwork for future studies investigating how sleep can overcome stress on the brain.


Assuntos
Movimentos Oculares , Estresse Psicológico , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Estresse Psicológico/psicologia , Córtex Pré-Frontal , Sono , Mamíferos
3.
Neurobiol Dis ; 154: 105343, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753293

RESUMO

This study examines changes in synaptic transmission with progression of the chronic epileptic state. Male Sprague-Dawley rats (P40-45) were injected with either saline or pilocarpine. In rats injected with pilocarpine, status epilepticus ensued. Hippocampal slices were cut 20-60 days or 80-110 days post-treatment. Evoked and miniature EPSCs (mEPSCs) were recorded from CA1 pyramidal neurons using whole-cell voltage-clamp. Fiber volleys were also recorded from stratum radiatum. Evoked EPSCs from the pilocarpine-treated cohort showed enhanced amplitudes 20-60 days post-treatment compared to the saline-treated cohort, whereas mEPSCs recorded from the same age group showed no change in event frequency and a slight but significant decrease in mEPSC amplitude distribution. In contrast, comparing evoked EPSCs and mEPSCs recorded 80-110 days after treatment indicated reduced amplitudes from pilocarpine-treated animals compared to controls. mEPSC inter-event interval decreased. This could be explained by a partial depletion of the ready releasable pool of neurotransmitter vesicles in Schaffer collateral presynaptic terminals of the pilocarpine-treated rats. In both saline- and pilocarpine-treated cohorts, concomitant decreases in mEPSC amplitudes as time after treatment progressed suggest that age-related changes in CA1 circuitry may be partially responsible for changes in synaptic transmission that may influence the chronic epileptic state.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Progressão da Doença , Epilepsia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Estado Epiléptico/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Doença Crônica , Epilepsia/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Transmissão Sináptica/efeitos dos fármacos
4.
J Neurosci ; 38(15): 3708-3728, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29540552

RESUMO

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Plasticidade Neuronal , Memória Espacial , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Condicionamento Clássico , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Mutação Puntual , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Physiol Rep ; 5(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29138358

RESUMO

Hippocampal neuron plasticity is strongly associated with learning, memory, and cognition. In addition to modification of synaptic function and connectivity, the capacity of hippocampal neurons to undergo plasticity involves the ability to change nonsynaptic excitability. This includes altering the probability that EPSPs will generate action potentials (E-S plasticity). Epilepsy is a prevalent neurological disorder commonly associated with neuronal hyperexcitability and cognitive dysfunction. We examined E-S plasticity in chronically epileptic Sprague-Dawley rats 3-10 weeks after pilocarpine-induced status epilepticus CA1 neurons in hippocampal slices were assayed by whole-cell current clamp to measure EPSPs evoked by Schaffer collateral stimulation. Using a weak spike-timing-dependent protocol to induce plasticity, we found robust E-S potentiation in conjunction with weak long-term potentiation (LTP) in saline-treated rats. In pilocarpine-treated rats, a similar degree of LTP was found, but E-S potentiation was reduced. Additionally, the degree of E-S potentiation was not correlated with the degree of LTP for either group, suggesting that they independently contribute to neuronal plasticity. E-S potentiation also differed from LTP in that E-S plasticity could be induced solely from action potentials generated by postsynaptic current injection. The calcium chelating agent BAPTA in the intracellular solution blocked LTP and E-S potentiation, revealing the calcium dependence of both processes. These findings suggest that LTP and E-S potentiation have overlapping but nonidentical mechanisms of inducing neuronal plasticity that may independently contribute to cognitive disruptions observed in the chronic epileptic state.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Pilocarpina/farmacologia , Estado Epiléptico/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica/métodos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Agonistas Muscarínicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
6.
Neuropharmacology ; 85: 57-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24878241

RESUMO

Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) ionotropic glutamate receptors facilitate synaptic plasticity and contribute essentially to learning and memory, properties which make AMPA receptors targets for drug discovery and development. One region at which several different classes of positive allosteric modulators bind lies at the dimer interface between the ligand-binding core of the second, membrane-proximal, extracellular domain of AMPA receptors. This solvent-accessible binding pocket has been the target of drug discovery efforts, leading to the recent delineation of five "subsites" which differentially allow access to modulator moieties, and for which distinct modulator affinities and apparent efficacies are attributed. Here we use the voltage-clamp technique in conjunction with rapid drug application to study the effects of mutants lining subsites "A" and "B" of the allosteric modulator pocket to assess affinity and efficacy of allosteric modulation by cyclothiazide, CX614, CMPDA and CMPDB. A novel analysis of the decay of current produced by the onset of desensitization has allowed us to estimate both affinity and efficacy from single concentrations of modulator. Such an approach may be useful for effective high throughput screening of new target compounds.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Receptores de AMPA/metabolismo , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Simulação por Computador , Descoberta de Drogas , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Células HEK293 , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação , Oxazinas/química , Oxazinas/farmacologia , Técnicas de Patch-Clamp , Receptores de AMPA/genética , Transfecção
7.
J Biol Chem ; 289(15): 10702-10714, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24550387

RESUMO

AMPA receptors are gated through binding of glutamate to a solvent-accessible ligand-binding domain. Upon glutamate binding, these receptors undergo a series of conformational rearrangements regulating channel function. Allosteric modulators can bind within a pocket adjacent to the ligand-binding domain to stabilize specific conformations and prevent desensitization. Yelshansky et al. (Yelshansky, M. V., Sobolevsky, A. I., Jatzke, C., and Wollmuth, L. P. (2004) J. Neurosci. 24, 4728-4736) described a model of an electrostatic interaction between the ligand-binding domain and linker region to the pore that regulated channel desensitization. To test this hypothesis, we have conducted a series of experiments focusing on the R628E mutation. Using ultrafast perfusion with voltage clamp, we applied glutamate to outside-out patches pulled from transiently transfected HEK 293 cells expressing wild type or R628E mutant GluA2. In response to a brief pulse of glutamate (1 ms), mutant receptors deactivated with significantly slower kinetics than wild type receptors. In addition, R628E receptors showed significantly more steady-state current in response to a prolonged (500-ms) glutamate application. These changes in receptor kinetics occur through a pathway that is independent of that of allosteric modulators, which show an additive effect on R628E receptors. In addition, ligand binding assays revealed the R628E mutation to have increased affinity for agonist. Finally, we reconciled experimental data with computer simulations that explicitly model mutant and modulator interactions. Our data suggest that R628E stabilizes the receptor closed cleft conformation by reducing agonist dissociation and the transition to the desensitized state. These results suggest that the AMPA receptor external vestibule is a viable target for new positive allosteric modulators.


Assuntos
Mutação Puntual , Receptores de AMPA/química , Receptores de AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/química , Sítio Alostérico , Animais , Sítios de Ligação , Células HEK293 , Humanos , Cinética , Ligantes , Modelos Teóricos , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Ratos
8.
Neuron ; 81(1): 91-102, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24411734

RESUMO

Voltage-gated ion channels exhibit complex properties, which can be targeted in pharmacological therapies for disease. Here, we report that the pro-oxidant, tert-butyl dihydroquinone (BHQ), modulates Ca(v)2.1 Ca²âº channels in ways that oppose defects in channel gating and synaptic transmission resulting from a familial hemiplegic migraine mutation (S218L). BHQ slows deactivation, inhibits voltage-dependent activation, and potentiates Ca²âº-dependent facilitation of Ca(v)2.1 channels in transfected HEK293T cells. These actions of BHQ help offset the gain of function and reduced Ca²âº-dependent facilitation of Ca(v)2.1 channels with the S218L mutation. Transgenic expression of the mutant channels at the Drosophila neuromuscular junction causes abnormally elevated evoked postsynaptic potentials and impaired synaptic plasticity, which are largely restored to the wild-type phenotypes by BHQ. Our results reveal a mechanism by which a Ca(v)2.1 gating modifier can ameliorate defects associated with a disease-causing mutation in Ca(v)2.1.


Assuntos
Canais de Cálcio Tipo N/genética , Canais de Cálcio/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Enxaqueca com Aura/genética , Mutação/genética , Quinonas/farmacologia , Animais , Animais Geneticamente Modificados , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Biofísica , Cálcio/metabolismo , Canais de Cálcio/genética , Simulação por Computador , Modelos Animais de Doenças , Drosophila , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Líquido Intracelular/efeitos dos fármacos , Lisina/genética , Potenciais da Membrana/genética , Enxaqueca com Aura/tratamento farmacológico , Enxaqueca com Aura/patologia , Modelos Biológicos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/genética , Técnicas de Patch-Clamp , Serina/genética , Transfecção
9.
Sleep ; 36(11): 1723-35, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24179307

RESUMO

STUDY OBJECTIVES: Electroencephalographic slow wave activity (SWA) during non-rapid eye movement (NREM) sleep results from the synchronous oscillation of cortical neurons and is the standard measurement of sleep homeostasis. SWA is not a direct measure of sleep pressure accumulation, but rather a measure of the NREM-sleep response to accumulated sleep pressure. Currently, no practical standard for the direct measurement of sleep pressure accumulation exists. Recently, it was demonstrated that rat cortical neurons undergo oscillations during wake that are similar to the cortical oscillations responsible for SWA. Furthermore, these oscillations increase in number as time awake increases. Here we hypothesize that period-amplitude analysis of the electroencephalogram (EEG), which treats the EEG as a series of discrete waves, can measure these cortical oscillations, and thus, is a measure of sleep-pressure accumulation during extended wake. DESIGN: Mice were sleep deprived for 24 h by confinement to a slowly rotating wheel in order to assess wake-dependent changes in EEG wave incidence. MEASUREMENTS AND RESULTS: Continuous period-amplitude analysis of the waking EEG across 24 h of sleep deprivation revealed that the incidence of 2 to 6 Hz waves increased exponentially over the deprivation period. This increase in wave incidence appeared to occur in two phases with exponential time constants of approximately 0.12 h and 3 h. Further analysis revealed that the changes in wave incidence were significantly correlated with two established markers of sleep pressure, SWA and NREM sleep latency. CONCLUSIONS: The data suggest that wave incidence is an effective method of measuring sleep homeostasis in the waking EEG that provides better temporal resolution than spectral power analysis.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Privação do Sono/fisiopatologia , Animais , Eletroencefalografia/métodos , Eletromiografia , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vigília/fisiologia
10.
Neuropharmacology ; 64: 45-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22735771

RESUMO

Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors facilitate synaptic plasticity and can improve various forms of learning and memory. These modulators show promise as therapeutic agents for the treatment of neurological disorders such as schizophrenia, ADHD, and mental depression. Three classes of positive modulator, the benzamides, the thiadiazides, and the biarylsulfonamides differentially occupy a solvent accessible binding pocket at the interface between the two subunits that form the AMPA receptor ligand-binding pocket. Here, we describe the electrophysiological properties of a new chemotype derived from a structure-based drug design strategy (SBDD), which makes similar receptor interactions compared to previously reported classes of modulator. This pyrazole amide derivative, JAMI1001A, with a promising developability profile, efficaciously modulates AMPA receptor deactivation and desensitization of both flip and flop receptor isoforms. This article is part of a Special Issue entitled 'Cognitive Enhancers'.


Assuntos
Acetamidas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Nootrópicos/farmacologia , Pirazóis/farmacologia , Receptores de AMPA/agonistas , Tiofenos/farmacologia , Acetamidas/química , Acetamidas/metabolismo , Sítio Alostérico , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Química Farmacêutica/métodos , Bases de Dados de Proteínas , Desenho de Fármacos , Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/metabolismo , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Cinética , Ligantes , Nootrópicos/química , Nootrópicos/metabolismo , Conformação Proteica , Subunidades Proteicas/agonistas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Receptores de AMPA/química , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Tiofenos/química , Tiofenos/metabolismo
11.
Mol Pharmacol ; 80(2): 267-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21543522

RESUMO

At the dimer interface of the extracellular ligand-binding domain of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1-3',2')1,3-oxazino(6',5'-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine 1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; 2) whether these compounds are splice isoform-selective; and 3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação/fisiologia , Cristalografia por Raios X/métodos , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Células HEK293 , Humanos , Oxazinas/química , Oxazinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de AMPA/metabolismo , Relação Estrutura-Atividade
12.
J Biol Chem ; 285(40): 30531-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20682774

RESUMO

Scorpion ß-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu(15) in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4(E15R) is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4(E15R) revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4(E15R) is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4(E15R) are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4(E15R) can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin-based therapeutics to prevent lethality from scorpion envenomation.


Assuntos
Substituição de Aminoácidos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Venenos de Escorpião/genética , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Animais , Sítios de Ligação , Mordeduras e Picadas/terapia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Camundongos , Mutação , Ratos , Ratos Wistar , Venenos de Escorpião/antagonistas & inibidores , Venenos de Escorpião/uso terapêutico , Escorpiões
13.
Brain Res ; 1352: 61-9, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20655886

RESUMO

Interactions between cholinergic and glutamatergic neurotransmitter systems influence synaptic transmission and plasticity. While previous studies have examined cross-talk between acetylcholine (ACh) and NMDA or AMPA receptors, little is known about the effect of ACh on kainate receptors (KARs). We show that stimulation of m1 or m3 muscarinic ACh receptors (mAChRs) for 2min potentiates recombinant KAR currents in a long lasting fashion. Muscarinic AChR activation potentiates heteromeric GluK2/GluK4 and GluK2/GluK5 receptors, but not homomeric GluK2 receptors. In hippocampal slices kainate potentiates mossy fiber axon excitability. Transient mAChR activation enhances this action of kainate, suggesting a novel mechanism through which acetylcholine could modulate synaptic transmission in the hippocampus. KAR over-activation has been implicated in excitotoxic cell death. To establish the functional significance of the interaction between mAChRs and KARs we examined the effect of mAChR activation on KAR-mediated excitotoxicity. We find that during pharmacological blockade of NMDA and AMPA receptors, KAR activation with AMPA produces significant cell death in primary cortical culture. Concanavalin A (Con A), which selectively blocks KAR desensitization, markedly increases this KAR-mediated neurotoxicity. Brief activation of mAChRs with pilocarpine significantly enhances KAR-mediated excitotoxicity both in the presence and absence of Con A. We conclude that KARs are modulated in a subunit dependent manner by mAChRs. We suggest that ACh may induce long lasting alterations in neuronal excitability and enhance excitotoxicity in part by potentiating KAR function.


Assuntos
Oócitos/fisiologia , Subunidades Proteicas/fisiologia , Receptores de Ácido Caínico/fisiologia , Receptores Muscarínicos/fisiologia , Animais , Encéfalo/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Oócitos/efeitos dos fármacos , Pilocarpina/farmacologia , Receptores de Ácido Caínico/química , Receptores Muscarínicos/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Xenopus , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
14.
J Neurophysiol ; 103(1): 371-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906882

RESUMO

Ca(v)2.1 channels regulate Ca(2+) signaling and excitability of cerebellar Purkinje neurons. These channels undergo a dual feedback regulation by incoming Ca(2+) ions, Ca(2+)-dependent facilitation and inactivation. Endogenous Ca(2+)-buffering proteins, such as parvalbumin (PV) and calbindin D-28k (CB), are highly expressed in Purkinje neurons and therefore may influence Ca(v)2.1 regulation by Ca(2+). To test this, we compared Ca(v)2.1 properties in dissociated Purkinje neurons from wild-type (WT) mice and those lacking both PV and CB (PV/CB(-/-)). Unexpectedly, P-type currents in WT and PV/CB(-/-) neurons differed in a way that was inconsistent with a role of PV and CB in acute modulation of Ca(2+) feedback to Ca(v)2.1. Ca(v)2.1 currents in PV/CB(-/-) neurons exhibited increased voltage-dependent inactivation, which could be traced to decreased expression of the auxiliary Ca(v)beta(2a) subunit compared with WT neurons. Although Ca(v)2.1 channels are required for normal pacemaking of Purkinje neurons, spontaneous action potentials were not different in WT and PV/CB(-/-) neurons. Increased inactivation due to molecular switching of Ca(v)2.1 beta-subunits may preserve normal activity-dependent Ca(2+) signals in the absence of Ca(2+)-buffering proteins in PV/CB(-/-) Purkinje neurons.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Parvalbuminas/metabolismo , Células de Purkinje/fisiologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Potenciais de Ação/fisiologia , Animais , Calbindinas , Cálcio/metabolismo , Linhagem Celular , Humanos , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Parvalbuminas/deficiência , Parvalbuminas/genética , Periodicidade , Ratos , Proteína G de Ligação ao Cálcio S100/genética
15.
J Physiol ; 588(Pt 4): 683-700, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026616

RESUMO

Kainate receptor subunits can form functional channels as homomers of GluK1, GluK2 or GluK3, or as heteromeric combinations with each other or incorporating GluK4 or GluK5 subunits. However, GluK4 and GluK5 cannot form functional channels by themselves. Incorporation of GluK4 or GluK5 into a heteromeric complex increases glutamate apparent affinity and also enables receptor activation by the agonist AMPA. Utilizing two-electrode voltage clamp of Xenopus oocytes injected with cRNA encoding kainate receptor subunits, we have observed that heteromeric channels composed of GluK2/GluK4 and GluK2/GluK5 have steady state concentration-response curves that were bell-shaped in response to either glutamate or AMPA. By contrast, homomeric GluK2 channels exhibited a monophasic steady state concentration-response curve that simply plateaued at high glutamate concentrations. By fitting several specific Markov models to GluK2/GluK4 heteromeric and GluK2 homomeric concentration-response data, we have determined that: (a) two strikingly different agonist binding affinities exist; (b) the high-affinity binding site leads to channel opening; and (c) the low-affinity agonist binding site leads to strong desensitization after agonist binding. Model parameters also approximate the onset and recovery kinetics of desensitization observed for macroscopic currents measured from HEK-293 cells expressing GluK2 and GluK4 subunits. The GluK2(E738D) mutation lowers the steady state apparent affinity for glutamate by 9000-fold in comparison to GluK2 homomeric wildtype receptors. When this mutant subunit was expressed with GluK4, the rising phase of the glutamate steady state concentration-response curve overlapped with the wildtype curve, whereas the declining phase was right-shifted toward lower affinity. Taken together, these data are consistent with a scheme whereby high-affinity agonist binding to a non-desensitizing GluK4 subunit opens the heteromeric channel, whereas low-affinity agonist binding to GluK2 desensitizes the whole channel complex.


Assuntos
Receptores de Ácido Caínico/fisiologia , Animais , Sítios de Ligação/fisiologia , Ácido Glutâmico/fisiologia , Cadeias de Markov , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Receptores de Ácido Caínico/genética , Xenopus laevis
16.
J Neurosci ; 28(7): 1659-71, 2008 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18272686

RESUMO

Kainate receptors contribute to synaptic plasticity and rhythmic oscillatory firing of neurons in corticolimbic circuits including hippocampal area CA3. We use zinc chelators and mice deficient in zinc transporters to show that synaptically released zinc inhibits postsynaptic kainate receptors at mossy fiber synapses and limits frequency facilitation of kainate, but not AMPA EPSCs during theta-pattern stimulation. Exogenous zinc also inhibits the facilitatory modulation of mossy fiber axon excitability by kainate but does not suppress the depressive effect of kainate on CA3 axons. Recombinant kainate receptors are inhibited in a subunit-dependent manner by physiologically relevant concentrations of zinc, with receptors containing the KA1 subunit being sensitive to submicromolar concentrations of zinc. Zinc inhibition does not alter receptor desensitization nor apparent agonist affinity and is only weakly voltage dependent, which points to an allosteric mechanism. Zinc inhibition is reduced at acidic pH. Thus, in the presence of zinc, a fall in pH potentiates kainate receptors by relieving zinc inhibition. Acidification of the extracellular space, as occurs during repetitive activity, may therefore serve to unmask kainate receptor neurotransmission. We conclude that zinc modulation of kainate receptors serves an important role in shaping kainate neurotransmission in the CA3 region.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Fibras Musgosas Hipocampais/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Zinco/farmacologia , Zinco/fisiologia , Animais , Quelantes/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Mutantes , Fibras Musgosas Hipocampais/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Xenopus
17.
Mol Pharmacol ; 72(5): 1220-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17720763

RESUMO

Among scorpion beta- and alpha-toxins that modify the activation and inactivation of voltage-gated sodium channels (Na(v)s), depressant beta-toxins have traditionally been classified as anti-insect selective on the basis of toxicity assays and lack of binding and effect on mammalian Na(v)s. Here we show that the depressant beta-toxins LqhIT2 and Lqh-dprIT3 from Leiurus quinquestriatus hebraeus (Lqh) bind with nanomolar affinity to receptor site 4 on rat skeletal muscle Na(v)s, but their effect on the gating properties can be viewed only after channel preconditioning, such as that rendered by a long depolarizing prepulse. This observation explains the lack of toxicity when depressant toxins are injected in mice. However, when the muscle channel rNa(v)1.4, expressed in Xenopus laevis oocytes, was modulated by the site 3 alpha-toxin LqhalphaIT, LqhIT2 was capable of inducing a negative shift in the voltage-dependence of activation after a short prepulse, as was shown for other beta-toxins. These unprecedented results suggest that depressant toxins may have a toxic impact on mammals in the context of the complete scorpion venom. To assess whether LqhIT2 and Lqh-dprIT3 interact with the insect and rat muscle channels in a similar manner, we examined the role of Glu24, a conserved "hot spot" at the bioactive surface of beta-toxins. Whereas substitutions E24A/N abolished the activity of both LqhIT2 and Lqh-dprIT3 at insect Na(v)s, they increased the affinity of the toxins for rat skeletal muscle channels. This result implies that depressant toxins interact differently with the two channel types and that substitution of Glu24 is essential for converting toxin selectivity.


Assuntos
Proteínas Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Canais de Sódio/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Oócitos , Ratos , Venenos de Escorpião/química , Venenos de Escorpião/genética , Canais de Sódio/genética , Canais de Sódio/metabolismo , Xenopus laevis
18.
J Neurosci ; 27(7): 1651-8, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17301173

RESUMO

Kv channels inhibit release indirectly by hyperpolarizing membrane potential, but the significance of Kv channel interaction with the secretory apparatus is not known. The Kv2.1 channel is commonly expressed in the soma and dendrites of neurons, where it could influence the release of neuropeptides and neurotrophins, and in neuroendocrine cells, where it could influence hormone release. Here we show that Kv2.1 channels increase dense-core vesicle (DCV)-mediated release after elevation of cytoplasmic Ca2+. This facilitation occurs even after disruption of pore function and cannot be explained by changes in membrane potential and cytoplasmic Ca2+. However, triggering release increases channel binding to syntaxin, a secretory apparatus protein. Disrupting this interaction with competing peptides or by deleting the syntaxin association domain of the channel at the C terminus blocks facilitation of release. Thus, direct association of Kv2.1 with syntaxin promotes exocytosis. The dual functioning of the Kv channel to influence release, through its pore to hyperpolarize the membrane potential and through its C-terminal association with syntaxin to directly facilitate release, reinforces the requirements for repetitive firing for exocytosis of DCVs in neuroendocrine cells and in dendrites.


Assuntos
Exocitose/fisiologia , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/fisiologia , Canais de Potássio Shab/fisiologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Exocitose/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação/métodos , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Mutagênese/fisiologia , Neuropeptídeos/metabolismo , Oócitos , Células PC12 , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Ratos , Vesículas Secretórias/efeitos dos fármacos , Transfecção/métodos , Xenopus
19.
J Pharmacol Exp Ther ; 321(3): 1208-25, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17325229

RESUMO

Bicifadine (1-p-tolyl-3-azabicyclo[3.1.0]hexane) inhibits monoamine neurotransmitter uptake by recombinant human transporters in vitro with a relative potency of norepinephrine > serotonin > dopamine (approximately 1:2:17). This in vitro profile is supported by microdialysis studies in freely moving rats, where bicifadine (20 mg/kg i.p.) increased extrasynaptic norepinephrine and serotonin levels in the prefrontal cortex, norepinephrine levels in the locus coeruleus, and dopamine levels in the striatum. Orally administered bicifadine is an effective antinociceptive in several models of acute, persistent, and chronic pain. Bicifadine potently suppressed pain responses in both the Randall-Selitto and kaolin models of acute inflammatory pain and in the phenyl-p-quinone-induced and colonic distension models of persistent visceral pain. Unlike many transport inhibitors, bicifadine was potent and completely efficacious in both phases of the formalin test in both rats and mice. Bicifadine also normalized the nociceptive threshold in the complete Freund's adjuvant model of persistent inflammatory pain and suppressed mechanical and thermal hyperalgesia and mechanical allodynia in the spinal nerve ligation model of chronic neuropathic pain. Mechanical hyperalgesia was also reduced by bicifadine in the streptozotocin model of neuropathic pain. Administration of the D(2) receptor antagonist (-)-sulpiride reduced the effects of bicifadine in the mechanical hyperalgesia assessment in rats with spinal nerve ligations. These results indicate that bicifadine is a functional triple reuptake inhibitor with antinociceptive and antiallodynic activity in acute, persistent, and chronic pain models, with activation of dopaminergic pathways contributing to its antihyperalgesic actions.


Assuntos
Analgésicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dor/tratamento farmacológico , Doença Aguda , Analgésicos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Doença Crônica , Desipramina/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Microdiálise , Atividade Motora/efeitos dos fármacos , Proteínas de Transporte de Neurotransmissores/antagonistas & inibidores , Proteínas de Transporte de Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/metabolismo , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...