Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 11774, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082720

RESUMO

Sensitivity of the anatase and rutile phases of titanium dioxide to Swift Heavy Ion (SHI) irradiation was experimentally probed and compared with the predictions of the Coulomb explosion, analytical and inelastic thermal spike models of ion-matter interaction. Conforming to the predictions of all these models, our study indicated higher sensitivity of anatase to these ions than the rutile phase. A detailed examination however revealed that Coulomb explosion model cannot explain either the nature of variation of the interaction cross section of SHI with the energy deposited by these ions, Se to the target electrons, or the relative values of the threshold electronic energy loss, Seth of anatase and rutile. The analytical thermal spike (a-TS) model, using the available physicochemical data for this oxide, predicted that tracks cannot form either in anatase or in rutile by 297 MeV and 511 MeV Ni ions, while inelastic thermal spike (i-TS) model predicted formation of ion tracks by 297 MeV Ni ions and their absence with 511 MeV Ni ions in both anatase and rutile. Our observation agreed with the predictions of i-TS model albeit with a difference in the radius of the tracks. In addition, we observed halo of defect ridden crystalline region of much larger radius around the ion track. Interestingly, the radius of the halo scales with the velocity of the ions, which is opposite to the conventionally observed velocity effect.

2.
Rev Sci Instrum ; 87(11): 113901, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910696

RESUMO

An innovative experimental setup, PELIICAEN, allowing the modification of materials and the study of the effects induced by multiply charged ion beams at the nanoscale is presented. This ultra-high vacuum (below 5 × 10-10 mbar) apparatus is equipped with a focused ion beam column using multiply charged ions and a scanning electron microscope developed by Orsay Physics, as well as a scanning probe microscope. The dual beam approach coupled to the scanning probe microscope achieves nanometer scale in situ topological analysis of the surface modifications induced by the ion beams. Preliminary results using the different on-line characterization techniques to study the formation of nano-hillocks on silicon and mica substrates are presented to illustrate the performances of the setup.

3.
Rev Sci Instrum ; 84(9): 095115, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24089874

RESUMO

An innovative experimental equipment allowing to study the sputtering induced by ion beam irradiation is presented. The sputtered particles are collected on a catcher which is analyzed in situ by Auger electron spectroscopy without breaking the ultra high vacuum (less than 10(-9) mbar), avoiding thus any problem linked to possible contamination. This method allows to measure the angular distribution of sputtering yield. It is now possible to study the sputtering of many elements such as carbon based materials. Preliminary results are presented in the case of highly oriented pyrolytic graphite and tungsten irradiated by an Ar(+) beam at 2.8 keV and 7 keV, respectively.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 1): 031604, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12689077

RESUMO

We investigate the wetting properties of random nanostructured surfaces, with particular attention devoted to the phenomenon of contact angle hysteresis. For this purpose, solid substrates were initially tailored at a nanometric scale by using swift heavy ion irradiation which produced a random distribution of defects. We characterize the wetting properties of water on these heterogeneous surfaces by an average spreading parameter and by the contact angle hysteresis. For weak values of the areal density of defects phi(d), the hysteresis grows linearly with phi(d), indicating that the defects pin the contact line individually. However, at higher values of phi(d), collective pinning effects appear and the hysteresis decreases with increasing phi(d). We show that in the linear regime our experimental results are in good quantitative agreement with theoretical predictions for contact angle hysteresis induced by a single isolated defect on a solid surface.

9.
Phys Rev B Condens Matter ; 38(15): 10205-10216, 1988 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9945872
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...