Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Astron (Dordr) ; 54(2-3): 1197-1221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36915622

RESUMO

Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals. In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we argue that a large space-based mission designed to detect and investigate thermal emission spectra of terrestrial exoplanets in the mid-infrared wavelength range provides unique scientific potential to address these goals and surpasses the capabilities of other approaches. While NASA might be focusing on large missions that aim to detect terrestrial planets in reflected light, ESA has the opportunity to take leadership and spearhead the development of a large mid-infrared exoplanet mission within the scope of the "Voyage 2050" long-term plan establishing Europe at the forefront of exoplanet science for decades to come. Given the ambitious science goals of such a mission, additional international partners might be interested in participating and contributing to a roadmap that, in the long run, leads to a successful implementation. A new, dedicated development program funded by ESA to help reduce development and implementation cost and further push some of the required key technologies would be a first important step in this direction. Ultimately, a large mid-infrared exoplanet imaging mission will be needed to help answer one of humankind's most fundamental questions: "How unique is our Earth?"

2.
Nature ; 580(7805): 597-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161364

RESUMO

Ultrahot giant exoplanets receive thousands of times Earth's insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3-5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10-14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ('evening') and night-to-day ('morning') terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.

3.
Astrophys J ; 892(1): 40, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33958809

RESUMO

We develop empirical relationships for the accretion and erosion of colliding gravity-dominated bodies of various compositions under conditions expected in late-stage solar system formation. These are fast, easily coded relationships based on a large database of smoothed particle hydrodynamics (SPH) simulations of collisions between bodies of different compositions, including those that are water rich. The accuracy of these relations is also comparable to the deviations of results between different SPH codes and initial thermal/rotational conditions. We illustrate the paucity of disruptive collisions between major bodies, as compared to collisions between less massive planetesimals in late-stage planet formation, and thus focus on more probable, low-velocity collisions, though our relations remain relevant to disruptive collisions as well. We also pay particular attention to the transition zone between merging collisions and those where the impactor does not merge with the target, but continues downrange, a "hit-and-run" collision. We find that hit-and-run collisions likely occur more often in density-stratified bodies and across a wider range of impact angles than suggested by the most commonly used analytic approximation. We also identify a possible transitional zone in gravity-dominated collisions where larger bodies may undergo more disruptive collisions when the impact velocity exceeds the sound speed, though understanding this transition warrants further study. Our results are contrary to the commonly assumed invariance of total mass (scale), density structure, and material composition on the largest remnants of giant impacts. We provide an algorithm for adopting our model into N-body planet formation simulations, so that the mass of growing planets and debris can be tracked.

4.
Nature ; 511(7509): 303-6, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030166

RESUMO

The asteroid 4 Vesta was recently found to have two large impact craters near its south pole, exposing subsurface material. Modelling suggested that surface material in the northern hemisphere of Vesta came from a depth of about 20 kilometres, whereas the exposed southern material comes from a depth of 60 to 100 kilometres. Large amounts of olivine from the mantle were not seen, suggesting that the outer 100 kilometres or so is mainly igneous crust. Here we analyse the data on Vesta and conclude that the crust-mantle boundary (or Moho) is deeper than 80 kilometres.

5.
Astrobiology ; 13(9): 793-813, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24015759

RESUMO

A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.


Assuntos
Meio Ambiente Extraterreno , Planetas , Planeta Terra , Astros Celestes
6.
Nature ; 491(7423): 207-11, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23075844

RESUMO

Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

7.
Nature ; 441(7091): 305-9, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16710412

RESUMO

Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

8.
Science ; 310(5746): 251-5, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16224012

RESUMO

Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.


Assuntos
Astronomia , Planetas , Fenômenos Astronômicos , Exobiologia , Sistema Solar
9.
Nature ; 421(6923): 608-11, 2003 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-12571589

RESUMO

Asteroid families are groups of small bodies that share certain orbit and spectral properties. More than 20 families have now been identified, each believed to have resulted from the collisional break-up of a large parent body in a regime where gravity controls the outcome of the collision more than the material strength of the rock. The size and velocity distributions of the family members provide important constraints for testing our understanding of the break-up process, but erosion and dynamical diffusion of the orbits over time can erase the original signature of the collision. The recently identified young Karin family provides a unique opportunity to study a collisional outcome almost unaffected by orbit evolution. Here we report numerical simulations modelling classes of collisions that reproduce the main characteristics of the Karin family. The sensitivity of the outcome of the collision to the internal structure of the parent body allows us to show that the family must have originated from the break-up of a pre-fragmented parent body, and that all large family members formed by the gravitational reaccumulation of smaller bodies. We argue that most of the identified asteroid families are likely to have had a similar history.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...