Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Science ; 377(6614): 1513-1519, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007094

RESUMO

The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.

2.
Geobiology ; 16(1): 49-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29076282

RESUMO

Cyanobacteria have long been thought to induce the formation of Ca-carbonates as secondary by-products of their metabolic activity, by shifting the chemical composition of their extracellular environment to conditions favoring mineral precipitation. Some cyanobacterial species forming Ca-carbonates intracellularly were recently discovered. However, the environmental conditions under which this intracellular biomineralization process can occur and the impact of cyanobacterial species forming Ca-carbonates intracellularly on extracellular carbonatogenesis are not known. Here, we show that these cyanobacteria can form Ca-carbonates intracellularly while growing in extracellular solutions undersaturated with respect to all Ca-carbonate phases, that is, conditions thermodynamically unfavorable to mineral precipitation. This shows that intracellular Ca-carbonate biomineralization is an active process; that is, it costs energy provided by the cells. The cost of energy may be due to the active accumulation of Ca intracellularly. Moreover, unlike cyanobacterial strains that have been usually considered before by studies on Ca-carbonate biomineralization, cyanobacteria forming intracellular carbonates may slow down or hamper extracellular carbonatogenesis, by decreasing the saturation index of their extracellular solution following the buffering of the concentration of extracellular calcium to low levels.


Assuntos
Carbonato de Cálcio/metabolismo , Cyanothece/metabolismo , Cálcio/metabolismo , Técnicas de Cultura , Cyanothece/crescimento & desenvolvimento
3.
Heliyon ; 1(2): e00034, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27123494

RESUMO

Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure of sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon-carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Yet, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.

4.
Geobiology ; 11(2): 139-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23301909

RESUMO

Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 µm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably improve our knowledge and understanding of the microfossils present in the geological record.


Assuntos
Bactérias/ultraestrutura , Fósseis , Microbiologia do Solo , Solo/química , Microscopia Eletrônica , Marrocos , Análise Espectral
5.
Geobiology ; 10(2): 118-29, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22299653

RESUMO

Morphological and chemical evidence of ancient life is widespread in sedimentary rocks retrieved from shallow depths in the Earth's crust. Metamorphism is highly detrimental to the preservation of biological information in rocks, thus limiting the geological record in which traces of life might be found. Deformation and increasing pressure/temperature during deep burial may alter the morphology as well as the composition and structure of both the organic and mineral constituents of fossils. However, microspore fossils have been previously observed in intensely metamorphosed rocks. It has been suggested that their small size, and/or the nature of the polymer composing their wall, and/or the mineralogy of their surrounding matrix were key parameters explaining their exceptional preservation. Here, we describe the remarkable morphological preservation of plant macrofossils in blueschist metamorphic rocks from New Zealand containing lawsonite. Leaves and stems can be easily identified at the macroscale. At the microscale, polygonal structures with walls mineralized by micas within the leaf midribs and blades may derive from the original cellular ultrastructure or, alternatively, from the shrinkage during burial of the gelified remnants of the leaves in an abiotic process. Processes and important parameters involved in the remarkable preservation of these fossils during metamorphism are discussed. Despite the excellent morphological preservation, the initial biological polymers have been completely transformed to graphitic carbonaceous matter down to the nanometer scale. This occurrence demonstrates that plant macrofossils may experience major geodynamic processes such as metamorphism and exhumation involving deep changes and homogenization of their carbon chemistry and structure but still retain their morphology with remarkable integrity even if they are not shielded by any hard-mineralized concretion.


Assuntos
Carbono/análise , Fósseis , Sedimentos Geológicos/química , Fenômenos Geológicos , Plantas/ultraestrutura , Preservação Biológica , Microscopia Eletrônica de Transmissão e Varredura , Nova Zelândia , Plantas/química , Análise Espectral Raman
6.
Geobiology ; 9(6): 459-70, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21955835

RESUMO

Iron-oxidizing bacteria are important actors of the geochemical cycle of iron in modern environments and may have played a key role all over Earth's history. However, in order to better assess that role on the modern and the past Earth, there is a need for better understanding the mechanisms of bacterial iron oxidation and for defining potential biosignatures to be looked for in the geologic record. In this study, we investigated experimentally and at the nanometre scale the mineralization of iron-oxidizing bacteria with a combination of synchrotron-based scanning transmission X-ray microscopy (STXM), scanning transmission electron microscopy (STEM) and cryo-transmission electron microscopy (cryo-TEM). We show that the use of cryo-TEM instead of conventional microscopy provides detailed information of the successive iron biomineralization stages in anaerobic nitrate-reducing iron-oxidizing bacteria. These results suggest the existence of preferential Fe-binding and Fe-oxidizing sites on the outer face of the plasma membrane leading to the nucleation and growth of Fe minerals within the periplasm of these cells that eventually become completely encrusted. In contrast, the septa of dividing cells remain nonmineralized. In addition, the use of cryo-TEM offers a detailed view of the exceptional preservation of protein globules and the peptidoglycan within the Fe-mineralized cell walls of these bacteria. These organic molecules and ultrastructural details might be protected from further degradation by entrapment in the mineral matrix down to the nanometre scale. This is discussed in the light of previous studies on the properties of Fe-organic interactions and more generally on the fossilization of mineral-organic assemblies.


Assuntos
Bactérias/química , Parede Celular/química , Compostos Ferrosos/metabolismo , Fósseis , Nitratos/metabolismo , Peptidoglicano/química , Proteínas/química , Bactérias/metabolismo , Bactérias/ultraestrutura , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Microscopia Eletrônica de Transmissão e Varredura , Minerais/análise , Oxirredução , Preservação Biológica
7.
Geobiology ; 7(4): 393-402, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19656217

RESUMO

The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.


Assuntos
Bactérias/citologia , Fósseis , Silicatos/química , Cálcio/análise , Ferro/análise , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microtomia , Compostos Orgânicos/análise , Análise Espectral Raman , Austrália Ocidental
8.
Geobiology ; 7(3): 373-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19573166

RESUMO

In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.


Assuntos
Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Fosfatos/metabolismo , Anaerobiose , Biotransformação , Compostos Férricos/metabolismo , Nitratos/metabolismo , Oxirredução
9.
Earth Planet Sci Lett ; 175(3-4): 161-7, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11543579

RESUMO

We present a study of the textural signature of terrestrial weathering and related biological activity in the Tatahouine meteorite. Scanning and transmission electron microscopy images obtained on the weathered samples of the Tatahouine meteorite and surrounding soil show two types of bacteria-like forms lying on mineral surfaces: (1) rod-shaped forms (RSF) about 70-80 nm wide and ranging from 100 nm to 600 nm in length; (2) ovoid forms (OVF) with diameters between 70 and 300 nm. They look like single cells surrounded by a cell wall. Only Na, K, C, O and N with traces of P and S are observed in the bulk of these objects. The chemical analyses and electron diffraction patterns confirm that the RSF and OVF cannot be magnetite or other iron oxides, iron hydroxides, silicates or carbonates. The sizes of the RSF and OVF are below those commonly observed for bacteria but are very similar to some bacteria-like forms described in the Martian meteorite ALH84001. All the previous observations strongly suggest that they are bacteria or their remnants. This conclusion is further supported by microbiological experiments in which pleomorphic bacteria with morphology similar to the OVF and RSF objects are obtained from biological culture of the soil surrounding the meteorite pieces. The present results show that bacteriomorphs of diameter less than 100 nm may in fact represent real bacteria or their remnants.


Assuntos
Bactérias/isolamento & purificação , Microbiologia Ambiental , Exobiologia , Meteoroides , Bactérias/ultraestrutura , Sedimentos Geológicos/microbiologia , Microscopia Eletrônica , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...