Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Rev ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568990

RESUMO

According to the United Nations, more than 800 million people are exposed to starvation. It is predicted that the world population will face much more serious starvation for reasons such as global warming, diseases, economic problems, rapid urbanization, and destruction of agricultural areas and water resources. Thus, there are significant hesitations about the sustainability of food resources, and the search for alternative food sources has increased. One of the leading alternative food sources is insects. Although the use of edible insects has been accepted in some areas of the world, entomophagy is not preferred in some countries due to sociocultural conditions, health concerns, neophobia, and entomophobia. Many people do not accept the direct consumption of raw insects, but insects can be transformed into more preferred forms by using different cooking techniques. Some ground edible insects are satisfactory in terms of nutritional value and have a reasonable level of acceptability when added to products such as bread, tortilla, and pasta in varying percentages. The world market value of edible insects was estimated to be US$3.2 million in 2021 and US$17.6 billion in 2032. In this review, the current and future situation of insects as an alternative food source is comprehensively discussed.

2.
Front Microbiol ; 11: 79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117114

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes high morbidity and mortality rates due to its biofilm form. Biofilm formation is regulated via quorum sensing (QS) mechanism and provides up to 1000 times more resistance against conventional antibiotics. QS related genes are expressed according to bacterial population density via signal molecules. QS inhibitors (QSIs) from natural sources are widely studied evaluating various extracts from extreme environments. It is suggested that extremely halophilic Archaea may also produce QSI compounds. For this purpose, we tested QS inhibitory potentials of ethyl acetate extracts from cell free supernatants and cells of Natrinema versiforme against QS and biofilm formation of P. aeruginosa. To observe QS inhibition, all extracts were tested on P. aeruginosa lasB-gfp, rhlA-gfp, and pqsA-gfp biosensor strains and biofilm inhibition was studied using P. aeruginosa PAO1. According to our results, QS inhibition ratios of cell free supernatant extract (CFSE) were higher than cell extract (CE) on las system, whereas CE was more effective on rhl system. In addition, anti-biofilm effect of CFSE was higher than CE. Structural analysis revealed that the most abundant compound in the extracts was trans 4-(2-carboxy-vinyl) benzoic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...