Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39052120

RESUMO

Botulinum neurotoxin (BoNT) has been in use since the 1970's. Its effect is reached mainly by inhibiting the release of acetylcholine in the synaptic gap of motor neurons or at the motor end plate and the parasympathetic ganglia. In the case of Parkinson's disease, it is used to treat several motor and non-motor symptoms. Within recent years increasingly numerous possible fields of application of BoNT have been found for the treatment of Parkinson's disease, and for some specific symptoms it has in fact become the therapy of choice, while for others it is but one of the therapeutic options that come into consideration when others are not sufficiently effective. In the following, we intend to outline the indications, the possible side effects and also the approvals for therapies with botulinum toxin in the primary and secondary symptoms of Parkinson's disease.

2.
Mov Disord ; 39(1): 130-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013497

RESUMO

BACKGROUND: Multiple system atrophy (MSA) clinically manifests with either predominant nigrostriatal or cerebellopontine degeneration. This corresponds to two different phenotypes, one with predominant Parkinson's symptoms (MSA-P [multiple system atrophy-parkinsonian subtype]) and one with predominant cerebellar deficits (MSA-C [multiple system atrophy-cerebellar subtype]). Both nigrostriatal and cerebellar degeneration can lead to impaired dexterity, which is a frequent cause of disability in MSA. OBJECTIVE: The aim was to disentangle the contribution of nigrostriatal and cerebellar degeneration to impaired dexterity in both subtypes of MSA. METHODS: We thus investigated nigrostriatal and cerebellopontine integrity using diffusion microstructure imaging in 47 patients with MSA-P and 17 patients with MSA-C compared to 31 healthy controls (HC). Dexterity was assessed using the 9-Hole Peg Board (9HPB) performance. RESULTS: Nigrostriatal degeneration, represented by the loss of cells and neurites, leading to a larger free-fluid compartment, was present in MSA-P and MSA-C when compared to HCs. Whereas no intergroup differences were observed between the MSAs in the substantia nigra, MSA-P showed more pronounced putaminal degeneration than MSA-C. In contrast, a cerebellopontine axonal degeneration was observed in MSA-P and MSA-C, with stronger effects in MSA-C. Interestingly, the degeneration of cerebellopontine fibers is associated with impaired dexterity in both subtypes, whereas no association was observed with nigrostriatal degeneration. CONCLUSION: Cerebellar dysfunction contributes to impaired dexterity not only in MSA-C but also in MSA-P and may be a promising biomarker for disease staging. In contrast, no significant association was observed with nigrostriatal dysfunction. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/complicações , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Substância Negra/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA