Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34452914

RESUMO

Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.

2.
Neuron ; 101(5): 950-962.e7, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30683545

RESUMO

Odor perception allows animals to distinguish odors, recognize the same odor across concentrations, and determine concentration changes. How the activity patterns of primary olfactory receptor neurons (ORNs), at the individual and population levels, facilitate distinguishing these functions remains poorly understood. Here, we interrogate the complete ORN population of the Drosophila larva across a broadly sampled panel of odorants at varying concentrations. We find that the activity of each ORN scales with the concentration of any odorant via a fixed dose-response function with a variable sensitivity. Sensitivities across odorants and ORNs follow a power-law distribution. Much of receptor sensitivity to odorants is accounted for by a single geometrical property of molecular structure. Similarity in the shape of temporal response filters across odorants and ORNs extend these relationships to fluctuating environments. These results uncover shared individual- and population-level patterns that together lend structure to support odor perceptions.


Assuntos
Odorantes , Neurônios Receptores Olfatórios/fisiologia , Animais , Drosophila melanogaster , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/efeitos dos fármacos , Receptores Odorantes/metabolismo , Limiar Sensorial , Olfato
3.
Elife ; 52016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27177418

RESUMO

The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.


Assuntos
Drosophila/ultraestrutura , Animais , Microscopia Eletrônica , Vias Neurais/ultraestrutura , Neurônios/ultraestrutura , Córtex Olfatório/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 112(2): E220-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25550513

RESUMO

Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis). By tracking the movements of animals responding to fixed spatial temperature gradients or random temperature fluctuations, we calculate the sensitivity and dynamics of the conversion of thermosensory inputs into motor responses. We discover three thermosensory neurons in each dorsal organ ganglion (DOG) that are required for positive thermotaxis. Random optogenetic stimulation of the DOG thermosensory neurons evokes behavioral patterns that mimic the response to temperature variations. In vivo calcium and voltage imaging reveals that the DOG thermosensory neurons exhibit activity patterns with sensitivity and dynamics matched to the behavioral response. Temporal processing of temperature variations carried out by the DOG thermosensory neurons emerges in distinct motor responses during thermotaxis.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Termorreceptores/fisiologia , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio , Gânglios/fisiologia , Larva/fisiologia , Locomoção/fisiologia , Optogenética , Sensação Térmica/fisiologia
5.
Nat Methods ; 9(3): 290-6, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245808

RESUMO

Small animals such as nematodes and insects analyze airborne chemical cues to infer the direction of favorable and noxious locations. In these animals, the study of navigational behavior evoked by airborne cues has been limited by the difficulty of precisely controlling stimuli. We present a system that can be used to deliver gaseous stimuli in defined spatial and temporal patterns to freely moving small animals. We used this apparatus, in combination with machine-vision algorithms, to assess and quantify navigational decision making of Drosophila melanogaster larvae in response to ethyl acetate (a volatile attractant) and carbon dioxide (a gaseous repellant).


Assuntos
Fatores Quimiotáticos/administração & dosagem , Sinais (Psicologia) , Drosophila melanogaster/fisiologia , Nebulizadores e Vaporizadores/veterinária , Comportamento Espacial/fisiologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Desenho de Equipamento , Análise de Falha de Equipamento , Comportamento Espacial/efeitos dos fármacos , Estimulação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...