Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(33): 9650-60, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20532310

RESUMO

A series of bis(TTF) donors containing aromatic linkers between the two TTF units has been synthesized in order to investigate on the electronic structure of the oxidized species from an experimental and theoretical point of view. A mono(TTF)-pyridine compound has been also prepared and characterized by single-crystal X-ray diffraction analysis. Oxidation of a solution of 2,6-bis(TTF)-pyridine (TTF-Pyr-TTF) or of 1,3-bis(TTF)-benzene (TTF-Bz-TTF) in CH(2)Cl(2) with less than 0.1 equivalent of [Cp(2)Fe][PF(6)] gives rise to a seven-line EPR spectrum consistent with the hyperfine structure calculated by DFT for the corresponding radical monocation. Increasing the proportion of oxidant leads to a four-line hyperfine structure, similar to the quartet pattern observed after oxidation of mono(TTF)-pyridine (Pyr-TTF) or mono(TTF)-benzene (Bz-TTF). In good accordance with the very weak value of J calculated by DFT for the dicationic biradicals these four-line spectra are attributed to [2,6-bis(TTF)-pyridine](2+) and [1,3-bis(TTF)-benzene](2+). Similar experimental results are obtained for 1,4-bis(TTF)-benzene. In this case, however, electrochemical oxidation leads to the monoradical at low potential and to the diradical at higher potential, while only the diradical could be observed by electrochemical oxidation of 2,6-bis(TTF)-pyridine or of 1,3-bis(TTF)-benzene.

2.
Chimia (Aarau) ; 63(12): 807-815, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28372601

RESUMO

A brief historical overview of physical chemistry at the University of Geneva as well as a description of the present research activities at the department of physical chemistry are presented.

3.
J Phys Chem A ; 110(31): 9736-42, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16884206

RESUMO

Paramagnetic complexes M(CO)5P(C6H5)2, with M = Cr, Mo, W, have been trapped in irradiated crystals of M(CO)5P(C6H5)3 (M = Cr, Mo, W) and M(CO)5PH(C6H5)2 (M = Cr, W) and studied by EPR. The radiolytic scission of a P-C or a P-H bond, responsible for the formation of M(CO)5P(C6H5)2, is consistent with both the number of EPR sites and the crystal structures. The g and 31P hyperfine tensors measured for M(CO)5P(C6H5)2 present some of the characteristics expected for the diphenylphosphinyl radical. However, compared to Ph2P*, the 31P isotropic coupling is larger, the dipolar coupling is smaller, and for Mo and W compounds, the g-anisotropy is more pronounced. These properties are well predicted by DFT calculations. In the optimized structures of M(CO)5P(C6H5)2 (M = Cr, Mo, W), the unpaired electron is mainly confined in a phosphorus p-orbital, which conjugates with the metal d(xz) orbital. The trapped species can be described as a transition metal-coordinated phosphinyl radical.

4.
Inorg Chem ; 44(4): 1147-52, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15859297

RESUMO

Oxidation of the square planar Rh(I) complex [Rh(SPS(Me))(PPh3)] (SPS(Me) = 1-methyl-1-P-2.6-bis(diphenylphosphinosulfide)-3,5-(bisphenyl)-phosphinine) (1) based on mixed SPS-pincer ligand with hexachloroethane yielded the Rh(III) dichloride complex [Rh(SPS(Me))(PPh3)Cl2] (2), which was structurally characterized. The homoleptic Rh(III) complex [Rh(SPS(Me))2][Cl] (4) was obtained via the stoichiometric reaction of SPS(Me) anion (3) with [Rh(tht)3Cl3] (tht = tetrahydrothiophene). Complex 4, which was characterized by X-ray diffraction, was also studied by cyclic voltammetry. Complex 4 can be reversibly reduced at E = -1.16 V (vs SCE) to give the neutral 19-electron Rh(II) complex [Rh(SPS(Me))2] (5). Accordingly, complex 5 could be synthesized via chemical reduction of 4 with zinc dust. EPR spectra of complex 5 were obtained after electrochemical or chemical reduction of 4 in THF or CH2Cl2. Hyperfine interaction with two equivalent 31P nuclei was observed in liquid solution, while an additional coupling with a spin 1/2 nucleus, probably 103Rh, was detected in frozen solution. The 31P couplings are consistent with DFT calculations that predict a drastic increase in the axial P-S bond lengths when reducing (SPS(Me))2Rh(III). In the reduced complex, the unpaired electron is mainly localized in a rhodium d(z2) orbital, consistent with the g-anisotropy measured at 100 K.

5.
Phys Chem Chem Phys ; 7(1): 85-93, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19785176

RESUMO

The radical cation of the redox active ligand 3,4-dimethyl-3',4'-bis-(diphenylphosphino)-tetrathiafulvalene (P2) has been chemically and electrochemically generated and studied by EPR spectroscopy. Consistent with DFT calculations, the observed hyperfine structure (septet due to the two methyl groups) indicates a strong delocalization of the unpaired electron on the central S2C=CS2 part of the tetrathiafulvalene (TTF) moiety and zero spin densities on the phosphine groups. In contrast with the ruthenium(0) carbonyl complexes of P2 whose one-electron oxidation directly leads to decomplexation and produces P2*+, one-electron oxidation of [Fe(P2)(CO)3] gives rise to the metal-centered oxidation species [Fe(I)(P2)(CO)3], characterized by a coupling with two 31P nuclei and a rather large g-anisotropy. The stability of this complex is however modest and, after some minutes, the species resulting from the scission of a P-Fe bond is detected. Moreover, in presence of free ligand, [Fe(I)(P2)(CO)3] reacts to give the complex [Fe(I)(P2)2(CO)] containing two TTF fragments. The two-electron oxidation of [Fe(P2)(CO)3] leads to decomplexation and to the P2*+ spectrum. Besides EPR spectroscopy, cyclic voltammetry as well as FTIR spectroelectrochemistry are used in order to explain the behaviour of [Fe(P2)(CO)3] upon oxidation. This behaviour notably differs from that of the Ru(0) counterpart. This difference is tentatively rationalized on the basis of structural arguments.


Assuntos
Compostos Heterocíclicos/química , Compostos Carbonílicos de Ferro/química , Rutênio/química , Cristalografia por Raios X , Eletrólise , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Quelantes de Ferro/química , Metais , Modelos Moleculares , Conformação Molecular , Oxirredução
6.
Chemistry ; 10(16): 4080-90, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15316987

RESUMO

EPR spectra show that one-electron reduction of bis(3-phenyl-6,6-(trimethylsilyl)phosphinine-2-yl)dimethylsilane (1) on an alkali mirror leads to a radical anion that is localized on a single phosphinine ring, whereas the radical anion formed from the same reaction in the presence of cryptand or from an electron transfer with sodium naphthalenide is delocalized on the two phosphinine rings. Density functional theory (DFT) calculations show that in the last species the unpaired electron is mainly confined in a loose P-P bond (3.479 A), which results from the overlap of two phosphorus p orbitals. In contrast, as attested by X-ray spectroscopy, the P-P distance in neutral 1 is large (5.8 A). As shown by crystal structure analysis, addition of a second electron leads to the formation of a classical P-P single bond (P-P 2.389 A). Spectral modifications induced by the presence of cryptand or by a change in the reaction temperature are consistent with the formation of a tight ion pair that stabilizes the radical structure localized on a single phosphinine ring. It is suggested that the structure of this pair hinders internal rotation around the C-Si bonds and prevents 1 from adopting a conformation that shortens the intramolecular P-P distance. The ability of the phosphinine radical anion to reversibly form weak P-P bonds with neutral phosphinines in the absence of steric hindrance is confirmed by EPR spectra obtained for 2,6-bis(trimethylsilyl)-3-phenylphosphinine (2). Moreover, as shown by NMR spectroscopy, in this system, which contains only one phosphinine ring, further reduction leads to an intermolecular reaction with the formation of a classical P-P bond.


Assuntos
Compostos Heterocíclicos/química , Compostos Organofosforados/química , Compostos de Organossilício/química , Cristalização , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Compostos Heterocíclicos/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Compostos Organofosforados/síntese química , Compostos de Organossilício/síntese química , Oxirredução , Termodinâmica
7.
Inorg Chem ; 42(20): 6241-51, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14514299

RESUMO

The reduction products of two diphosphaalkenes (1 and 2) and a bis(diphosphene) (3) containing sterically encumbered ligands and corresponding to the general formulas Ar-X=Y-Ar'-Y=X-Ar, have been investigated by EPR spectroscopy. Due to steric constraints in these molecules, at least one of the dihedral angles between the CXYC plane and either the Ar plane or the Ar' plane is largely nonzero and, hence, discourages conformations that are optimal for maximal conjugation of P=X (or P=Y) and aromatic pi systems. Comparison of the experimental hyperfine couplings with those calculated by DFT on model systems containing no cumbersome substituents bound to the aromatic rings shows that addition of an electron to the nonplanar neutral systems causes the X=Y-Ar'-Y=X moiety to become planar. In contrast to 1 and 2, 3 can be reduced to relatively stable dianion. Surprisingly the two-electron reduction product of 3 is paramagnetic. Interpretation of its EPR spectra, in the light of DFT calculations on model dianions, shows that in [3](2)(-) the plane of the Ar' ring is perpendicular to the CXYC planes. Due to interplay between steric and electronic preferences, the Ar-X=Y-Ar'-Y=X-Ar array for 3 is therefore dependent upon its redox state and acts as a "molecular switch".

8.
J Am Chem Soc ; 125(15): 4487-94, 2003 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-12683819

RESUMO

Reduction of a solution of octamethylcyclo-di(m-silylphenylenedisiloxane) 4 in THF on a potassium mirror leads to EPR/ENDOR spectra characterized by a large coupling (approximately 20 MHz) with two protons, similar to the spectra obtained after reduction of the m-disilylbenzene derivative 5, consistent with a localization of the extra electron on a single ring of 4. The spectra recorded after reduction of 4 at low temperature in the presence of an equimolar amount of 18-crown-6 exhibit couplings of approximately 10 MHz with four protons and indicate that embedding the counterion in crown-ether provokes the delocalization of the unpaired electron on the two phenyl rings of 4. The measured hyperfine interactions agree with those calculated by DFT for the optimized structure of 4(.-). Direct information on the structure of this anion is obtained from the X-ray diffraction of crystals grown at -18 degrees C in reduced solutions containing 4, potassium, and crown ether in a THF/hexane mixture. Both DFT and crystal structures clearly indicate the geometry changes caused by the addition of an electron to 4: the interphenyl distance drastically decreases, leading to a partial overlap of the two rings. The structure of 4(.-) is a model for an electron transfer (ET) transition state between the two aromatic rings. The principal reason for the adoption of this structure lies in the bonding interaction between the LUMO (pi orbitals) of these two fragments; moreover, the constraints of the macrocycle probably contribute to the stabilization of this structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA