Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 17(Suppl 1): 189, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143658

RESUMO

BACKGROUND: The initial stage of the biosynthesis of steroid hormones in animals occurs in the mitochondria of steroidogenic tissues, where cytochrome P450SCC (CYP11A1) encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone - the general precursor of all the steroid hormones, starting with progesterone. This stage is missing in plants where mitochondrial cytochromes P450 (the mito CYP clan) have not been found. Generating transgenic plants with a mitochondrial type P450 from animals would offer an interesting option to verify whether plant mitochondria could serve as another site of P450 monooxygenase reaction for the steroid hormones biosynthesis. RESULTS: For a more detailed comparison of steroidogenic systems of Plantae and Animalia, we have created and studied transgenic tobacco and tomato plants efficiently expressing mammalian CYP11A1 cDNA. The detailed phenotypic characterization of plants obtained has shown that through four generations studied, the transgenic tobacco plants have reduced a period of vegetative development (early flowering and maturation of bolls), enlarged biomass and increased productivity (quantity and quality of seeds) as compared to the only empty-vector containing or wild type plants. Moreover, the CYP11A1 transgenic plants show resistance to such fungal pathogen as Botrytis cinerea. Similar valuable phenotypes (the accelerated course of ontogenesis and/or stress resistance) are also visible in two clearly distinct transgenic tomato lines expressing CYP11A1 cDNA: one line (No. 4) has an accelerated rate of vegetative development, while the other (No. 7) has enhanced immunity to abiotic and biotic stresses. The progesterone level in transgenic tobacco and tomato leaves is 3-5 times higher than in the control plants of the wild type. CONCLUSIONS: For the first time, we could show the compatibility in vivo of even the most specific components of the systems of biosynthesis of steroid hormones in Plantae and Animalia. The hypothesis is proposed and substantiated that the formation of the above-noted special phenotypes of transgenic plants expressing mammalian CYP11A1 cDNA is due to the increased biosynthesis of progesterone that can be considered as a very ancient bioregulator of plant cells and the first real hormone common to plants and animals.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Nicotiana/genética , Solanum lycopersicum/genética , Esteroides/biossíntese , Agrobacterium/genética , Animais , Botrytis/fisiologia , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Clonagem Molecular , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Plantas Geneticamente Modificadas , Progesterona/metabolismo , Nicotiana/imunologia , Nicotiana/microbiologia
2.
J Neural Transm (Vienna) ; 122(9): 1289-301, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25626716

RESUMO

Mutations in more than 500 genes have been associated with intellectual disability (ID) and related disorders of cognitive function, such as autism and schizophrenia. Here we aimed to unravel the molecular epidemiology of non-specific ID in a genetic isolate using a combination of population and molecular genetic approaches. A large multigenerational pedigree was ascertained within a Dagestan Genetic Heritage research program in a genetic isolate of indigenous ethnics. Clinical characteristics of the affected members were based on combining diagnoses from regional psychiatric hospitals with our own clinical assessment, using a Russian translation of the structured psychiatric interviews, the Diagnostic Interview for Genetic Studies and the Family Interview for Genetic Studies, based on DSM-IV criteria. Weber/CHLC 9.0 STRs set was used for multipoint parametric linkage analyses (Simwalk2.91). Next, we checked CNVs and LOH (based on Affymetrix SNP 5.0 data) in the linked with ID genomic regions with the aim to identify candidate genes associated with mutations in linked regions. The number of statistically significant (p ≤ 0.05) suggestive linkage peaks with 1.3 < LOD < 3.0 we detected in a total of 10 genomic regions: 1q41, 2p25.3-p24.2, 3p13-p12.1, 4q13.3, 10p11, 11q23, 12q24.22-q24.31, 17q24.2-q25.1, 21q22.13 and 22q12.3-q13.1. Three significant linkage signals with LOD >3 were obtained at 2p25.3-p24.2 under the dominant model, with a peak at 21 cM flanked by loci D2S2976 and D2S2952; at 12q24.22-q24.31 under the recessive model, with a peak at -120 cM flanked by marker D12S2070 and D12S395 and at 22q12.3 under the dominant model, with a peak at 32 cM flanked by marker D22S683 and D22S445. After a set of genes had been designated as possible candidates in these specific chromosomal regions,we conducted an exploratory search for LOH and CNV based on microarray data to detect structural genomic variants within five ID-linked regions with LOD scores between 2.0 and 3.9. In these selected regions we obtained 173 ROH segments and 98 CN segments. Further analysis of region 2p25.3-p24.2 revealed deletions within genes encoding MYTL, SNTG2 and TPO among five of 21 affected cases at 2p25.3-p24.2. In the ID-linked region at 12q24.22-12q24.31 19 out of 21 ID cases carried segmental CNV and 20 of 21 them displayed ROH segments with mean size lengths for ID cases 2512 kb (500-6,472 kb) and for healthy control 682 kb (531-986 kb), including the genes MED13L, HRK, FBXW8, TESC, CDK2AP1 and SBNO1. Seven of 21 affected pedigree members displayed segmental deletions at 22q12.3 that includes the gene LARGE. Eight affected pedigree members carried ROH segments and 6 CN segments at 10p11.23-p11.21 containing the genes ZEB1, c10orf68 and EPC1. Our linkage and structural genomic variation analyses in a remote highland genetic isolate with aggregation of ID demonstrated that even highly isolated single kindred ID has oligo/polygenic pathogenesis. The results obtained implicate 10 genomic regions linked with ID that contain some of previously reported candidate genes, including HRK, FBXW8, TESC, CDK2AP1 and SBNO1 at 12q24 that were shown in recent studies as associated with brain measures derived from MRI scans.


Assuntos
Predisposição Genética para Doença , Variação Estrutural do Genoma , Deficiência Intelectual/genética , Feminino , Ligação Genética , Técnicas de Genotipagem , Humanos , Deficiência Intelectual/epidemiologia , Entrevista Psicológica , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Federação Russa/epidemiologia , Isolamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA