Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 23(13): 135301, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22418861

RESUMO

Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.

2.
Opt Express ; 19(17): 15864-78, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21934949

RESUMO

The principle, fabrication and characterization of a dielectric MEMS cantilever located a few 100 nm above a racetrack ring resonator are presented. After fabrication of the resonators on silicon-on-insulator (SOI) wafers in a foundry process, the cantilevers were integrated by surface micromachining techniques. Off-state deflections of the cantilevers have been optimized to appropriately position them near the evanescent field of the resonator. Using electrostatic actuation, moving the cantilevers into this evanescent field, the propagation properties of the ring waveguide are modulated. We demonstrate 122 pm tuning of the resonance wavelength of the optical ring resonator (in the optical C-band) without change of the optical quality factor, on application of 9 V to a 40 µm long cantilever. This compact integrated device can be used for tuning/switching a specific wavelength, with very little energy for operation and negligible cross talk with surrounding devices.

3.
Nano Lett ; 8(9): 2872-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18698727

RESUMO

A novel inverse imprinting procedure for nanolithography is presented which offers a transfer accuracy and feature definition that is comparable to state-of-the-art nanofabrication techniques. We illustrate the fabrication quality of a demanding nanophotonic structure: a photonic crystal waveguide. Local examination using photon scanning tunneling microscopy (PSTM) shows that the resulting nanophotonic structures have excellent guiding properties at wavelengths in the telecommunications range, which indicates a high quality of the local structure and the overall periodicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA