Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 25(1): 52, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147680

RESUMO

BACKGROUND: In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis. METHODS: Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model. RESULTS: We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics. CONCLUSIONS: We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.


Assuntos
Neoplasias , Via de Sinalização Wnt , Animais , Camundongos , Polaridade Celular/fisiologia , Neoplasias/patologia , Movimento Celular/genética
2.
Spine J ; 23(6): 912-920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36736741

RESUMO

BACKGROUND CONTEXT: Lateral mass screw fixation is the standard for posterior subaxial cervical fixation. Several freehand surgical techniques for placing lateral mass screws have been described which rely on anatomical landmarks and surgeon mastery of the technique to safely place screws. The accuracy of these freehand techniques is inherently variable and can be influenced by a surgeon's level of clinical experience. A novel technique was developed that utilizes the plane of the facet joint to create lateral mass screw pilot holes parallel with the joint line to improve the safety and accuracy of lateral mass screw placement regardless of experience. PURPOSE: To assess the safety and accuracy of lateral mass screw placement using a novel lateral mass drill guide instrument (LM Guide), compared to standard freehand technique. STUDY DESIGN: Randomized cadaveric study utilizing multiple surgeon evaluators to compare the safety and accuracy of guided cervical lateral mass placement compared to traditional freehand techniques. MATERIALS AND METHODS: Lateral mass screws were placed from C3 to C7 in 20 cadaver specimens by 8 spine surgeons of varying levels of clinical experience (4 attendings, 4 fellows). Screws were placed bilaterally using standard anatomic landmarks ("freehand") randomly allocated on one side and using the LM Guide on the other. Cadaveric specimens were imaged with high-resolution CT to assess screw placement. Zone grading for safety was conducted based on screw tip position and clinical severity of screw breach was based on proximity to surrounding neurovascular anatomy. Screws were graded as safe, at-risk, or critical, with at-risk and critical screws considered malpositioned. To assess the accuracy of screw trajectory placed using the LM Guide compared to freehand, sagittal screw angle was measured and compared to an "ideal" screw path parallel to the facet joint line. Freehand and LM Guide groups were compared using Pearson's chi-square correlation. RESULTS: Screw placement using the LM guide yielded a significantly lower rate of screw malpositioning, with 7 of 91 (7.7%) compared with 18 of 99 (18.2%) screws placed in the At-Risk or Critical Zones, p<.05. Of the 91 screws inserted using the LM Guide, 84 (92.3%) were in the Safe Zone, 7 (7.7%) were At-Risk, and 0 were in Critical zones. There was no incidence of neural or transverse foramen breaches with the LM Guide. In comparison, for the 99 screws inserted freehand, 81 (81.8%) were Safe, 14 (14.1%) were At-Risk, and 4 (4.1%) were in Critical zones. The 4 Critical zone freehand screw breaches included 1 neural foramen breach, 2 transverse foramen breaches, and 1 facet breach. The LM Guide also resulted in higher accuracy of screw trajectory, as indicated by a significant reduction in sagittal screw angle compared with freehand, p<.01. Notably, in the less-experienced surgeon cohort, the LM Guide significantly reduced the sagittal screw angle and resulted in no critical screw breaches compared to 3 critical breaches with freehand technique suggesting there might be a benefit in decreasing the learning curve associated with lateral mass screw placement. CONCLUSIONS: Lateral mass screw placement with a novel LM Guide that uses the facet joint to control screw trajectory improved the accuracy and reproducibility of screw placement with a significant reduction in screw breach rate and sagittal screw angle compared to freehand techniques regardless of surgeon experience level. CLINICAL SIGNIFICANCE: The inherent variability of freehand lateral mass screw placement can increase the risk of clinical complications associated with screw malpositioning. The technique presented in this cadaveric study may be a viable alternative to standard freehand technique that can improve the overall safety of lateral mass screw placement.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Parafusos Ósseos , Cadáver , Vértebras Cervicais/cirurgia , Reprodutibilidade dos Testes , Fusão Vertebral/métodos , Tomografia Computadorizada por Raios X/métodos
3.
Cancer Lett ; 557: 216090, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36773796

RESUMO

Bis(monoacylglycero)phosphates (BMPs), a class of lipids highly enriched within endolysosomal organelles, are key components of the lysosomal intraluminal vesicles responsible for activating sphingolipid catabolic enzymes. While BMPs are understudied relative to other phospholipids, recent reports associate BMP dysregulation with a variety of pathological states including neurodegenerative diseases and lysosomal storage disorders. Since the dramatic lysosomal remodeling characteristic of cellular transformation could impact BMP abundance and function, we employed untargeted lipidomics approaches to identify and quantify BMP species in several in vitro and in vivo models of breast cancer and comparative non-transformed cells and tissues. We observed lower BMP levels within transformed cells relative to normal cells, and consistent enrichment of docosahexaenoic acid (22:6) fatty acyl chain-containing BMP species in both human- and mouse-derived mammary tumorigenesis models. Our functional analysis points to a working model whereby 22:6 BMPs serve as reactive oxygen species scavengers in tumor cells, protecting lysosomes from oxidant-induced lysosomal membrane permeabilization. Our findings suggest that breast tumor cells might divert polyunsaturated fatty acids into BMP lipids as part of an adaptive response to protect their lysosomes from elevated reactive oxygen species levels, and raise the possibility that BMP-mediated lysosomal protection is a tumor-specific vulnerability that may be exploited therapeutically.


Assuntos
Neoplasias da Mama , Ácidos Docosa-Hexaenoicos , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/patologia , Fosfatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lisofosfolipídeos/metabolismo , Lisossomos/metabolismo
4.
Cancers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205696

RESUMO

The resistance of cancer cell subpopulations, including cancer stem cell (CSC) populations, to apoptosis-inducing chemotherapeutic agents is a key barrier to improved outcomes for cancer patients. The cationic amphiphilic drug hexamethylene amiloride (HMA) has been previously demonstrated to efficiently kill bulk breast cancer cells independent of tumor subtype or species but acts poorly toward non-transformed cells derived from multiple tissues. Here, we demonstrate that HMA is similarly cytotoxic toward breast CSC-related subpopulations that are resistant to conventional chemotherapeutic agents, but poorly cytotoxic toward normal mammary stem cells. HMA inhibits the sphere-forming capacity of FACS-sorted human and mouse mammary CSC-related cells in vitro, specifically kills tumor but not normal mammary organoids ex vivo, and inhibits metastatic outgrowth in vivo, consistent with CSC suppression. Moreover, HMA inhibits viability and sphere formation by lung, colon, pancreatic, brain, liver, prostate, and bladder tumor cell lines, suggesting that its effects may be applicable to multiple malignancies. Our observations expose a key vulnerability intrinsic to cancer stem cells and point to novel strategies for the exploitation of cationic amphiphilic drugs in cancer treatment.

5.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137979

RESUMO

Although understudied relative to many phospholipids, accumulating evidence suggests that bis(monoacylglycero)phosphate (BMP) is an important class of regulatory lipid that plays key roles in lysosomal integrity and function. BMPs are rare in most mammalian tissues, comprising only a few percent of total cellular lipid content, but are elevated in cell types such as macrophages that rely heavily on lysosomal function. BMPs are markedly enriched in endosomal and lysosomal vesicles compared to other organelles and membranous structures, and their unique sn-1:sn-1' stereoconfiguration may confer stability within the hydrolytic lysosomal environment. BMP-enriched vesicles serve in endosomal-lysosomal trafficking and function as docking structures for the activation of lysosomal hydrolytic enzymes, notably those involved in the catabolic breakdown of sphingolipids. BMP levels are dysregulated in lysosomal storage disorders, phospholipidosis, metabolic diseases, liver and kidney diseases and neurodegenerative disorders. However, whether BMP alteration is a mediator or simply a marker of pathological states is unclear. Likewise, although BMP acyl chain composition may be altered with disease states, the functional significance of specific BMP species remains to be resolved. Newly developed tools for untargeted lipidomic analysis, together with a deeper understanding of enzymes mediating BMP synthesis and degradation, will help shed further light on the functional significance of BMPs in cellular physiology and pathology.


Assuntos
Lisofosfolipídeos/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Monoglicerídeos/metabolismo , Animais , Humanos
6.
Cell Signal ; 70: 109588, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109549

RESUMO

The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/ß-catenin pathway in IPF. The potential impact of WNT/ß-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/ß-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16-24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/ß-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/ß-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/ß-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/ß-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/ß-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.


Assuntos
Células Epiteliais Alveolares , Senescência Celular , Fibrose Pulmonar Idiopática/metabolismo , Proteínas Wnt/fisiologia , Via de Sinalização Wnt , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Linhagem Celular , Humanos , Pulmão/citologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Cancer Res ; 80(3): 418-429, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31694904

RESUMO

miR-127 is downregulated in breast cancer, where it has been shown to suppress the proliferation, migration, and invasion of breast cancer cells. In triple-negative breast cancer (TNBC), miR-127 downregulation correlates with decreased disease-free and overall patient survival. Tumor suppressor miRNAs may hold therapeutic promise but progress has been limited by several factors, including the lability and high cost of miRNA mimics. Here, we take a novel approach to produce a miR-127 prodrug (miR-127PD), which we demonstrate is processed to mature, functional miR-127-3p in TNBC tumor cells. miR-127PD decreased the viability and motility of TNBC cells, sensitized TNBC cells to chemotherapy, and restricted the TNBC stem cell population. Furthermore, systemic delivery of miR-127PD suppressed tumor growth of MDA-MB-231 and MDA-MB-468 TNBC cells and spontaneous metastasis of MDA-MB-231 cells. In addition, CERK, NANOS1, FOXO6, SOX11, SOX12, FASN, and SUSD2 were identified as novel, functionally important targets of miR-127. In conclusion, our study demonstrates that miR-127 functions as a tumor and metastasis suppressor in TNBC and that delivery of miR-127 may hold promise as a novel therapy. SIGNIFICANCE: Exogenous administration of miR-127, which is functionally activated in target cells, inhibits growth and spontaneous metastasis of triple-negative breast cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/prevenção & controle , MicroRNAs/administração & dosagem , MicroRNAs/genética , Pró-Fármacos/administração & dosagem , Neoplasias de Mama Triplo Negativas/prevenção & controle , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metástase Linfática , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Endocr Relat Cancer ; 26(1): R1-R14, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400005

RESUMO

The ubiquitin system regulates diverse biological processes, many involved in cancer pathogenesis, by altering the ubiquitination state of protein substrates. This is accomplished by ubiquitin ligases and deubiquitinases (DUBs), which respectively add or remove ubiquitin from substrates to alter their stability, activity, localization and interactions. While lack of catalytic activity makes therapeutic targeting of ubiquitin ligases difficult, DUB inhibitors represent an active area of research and the identification of cancer-associated DUBs may lead to the development of novel therapeutics. A growing body of literature demonstrates that the DUB Otubain 1 (OTUB1) regulates many cancer-associated signaling pathways including MAPK, ERa, epithelial-mesenchymal transition (EMT), RHOa, mTORC1, FOXM1 and P53 to promote tumor cell survival, proliferation, invasiveness and therapeutic resistance. In addition, clinical studies have associated elevated OTUB1 expression with high grade, invasiveness and metastasis in several tumor types including lung, breast, ovarian, glioma, colon and gastric. Interestingly, in addition to catalytic DUB activity, OTUB1 displays a catalytic-independent, non-canonical activity where it inhibits the transfer of ubiquitin onto protein substrates by sequestration of E2 ubiquitin-conjugating enzymes. The aim of this review is to describe the canonical and non-canonical activities of OTUB1, summarize roles for OTUB1 in cancer-associated pathways and discuss its potential therapeutic targeting.


Assuntos
Cisteína Endopeptidases/metabolismo , Enzimas Desubiquitinantes/metabolismo , Neoplasias/metabolismo , Animais , Enzimas Desubiquitinantes/antagonistas & inibidores , Humanos
9.
Semin Cell Dev Biol ; 81: 78-87, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29107170

RESUMO

While the mutational activation of oncogenes drives tumor initiation and growth by promoting cellular transformation and proliferation, increasing evidence suggests that the subsequent re-engagement of largely dormant developmental pathways contributes to cellular phenotypes associated with the malignancy of solid tumors. Genetic studies from a variety of model organisms have defined many of the components that maintain epithelial planar cell polarity (PCP), or cellular polarity in the axis orthogonal to the apical-basal axis. These same components comprise an arm of non-canonical Wnt signaling that mediates cell motility events such as convergent extension movements essential to proper development. In this review, we summarize the increasing evidence that the Wnt/PCP signaling pathway plays active roles in promoting the proliferative and migratory properties of tumor cells, emphasizing the importance of subcellular localization of PCP components and protein-protein interactions in regulating cellullar properties associated with malignancy. Specifically, we discuss the increased expression of Wnt/PCP pathway components in cancer and the functional consequences of aberrant pathway activation, focusing on Wnt ligands, Frizzled (Fzd) receptors, the tetraspanin-like proteins Vangl1 and Vangl2, and the Prickle1 (Pk1) scaffold protein. In addition, we discuss negative regulation of the Wnt/PCP pathway, with particular emphasis on the Nrdp1 E3 ubiquitin ligase. We hypothesize that engagement of the Wnt/PCP pathway after tumor initiation drives malignancy by promoting cellular proliferation and invasiveness, and that the ability of Wnt/PCP signaling to supplant oncogene addiction may contribute to tumor resistance to oncogenic pathway-directed therapeutic agents.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/patologia
10.
Cancer Lett ; 375(1): 62-72, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26944316

RESUMO

Anticancer chemotherapeutics often rely on induction of apoptosis in rapidly dividing cells. While these treatment strategies are generally effective in debulking the primary tumor, post-therapeutic recurrence and metastasis are pervasive concerns with potentially devastating consequences. We demonstrate that the amiloride derivative 5-(N,N-hexamethylene) amiloride (HMA) harbors cytotoxic properties particularly attractive for a novel class of therapeutic agent. HMA is potently and specifically cytotoxic toward breast cancer cells, with remarkable selectivity for transformed cells relative to non-transformed or primary cells. Nonetheless, HMA is similarly cytotoxic to breast cancer cells irrespective of their molecular profile, proliferative status, or species of origin, suggesting that it engages a cell death mechanism common to all breast tumor subtypes. We observed that HMA induces a novel form of caspase- and autophagy-independent programmed necrosis relying on the orchestration of mitochondrial and lysosomal pro-death mechanisms, where its cytotoxicity was attenuated with ROS-scavengers or lysosomal cathepsin inhibition. Overall, our findings suggest HMA may efficiently target the heterogeneous populations of cancer cells known to reside within a single breast tumor by induction of a ROS- and lysosome-mediated form of programmed necrosis.


Assuntos
Amilorida/análogos & derivados , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Amilorida/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/farmacologia , Docetaxel , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lisossomos/enzimologia , Necrose , Espécies Reativas de Oxigênio , Taxoides/farmacologia
11.
Ann Surg Oncol ; 23(1): 257-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26193963

RESUMO

BACKGROUND: Rates of mastectomy with immediate reconstruction are rising. Skin flap necrosis after this procedure is a recognized complication that can have an impact on cosmetic outcomes and patient satisfaction, and in worst cases can potentially delay adjuvant therapies. Many retrospective studies of this complication have identified variable event rates and inconsistent associated factors. METHODS: A prospective study was designed to capture the rate of skin flap necrosis as well as pre-, intra-, and postoperative variables, with follow-up assessment to 8 weeks postoperatively. Uni- and multivariate analyses were performed for factors associated with skin flap necrosis. RESULTS: Of 606 consecutive procedures, 85 (14 %) had some level of skin flap necrosis: 46 mild (8 %), 6 moderate (1 %), 31 severe (5 %), and 2 uncategorized (0.3 %). Univariate analysis for any necrosis showed smoking, history of breast augmentation, nipple-sparing mastectomy, and time from incision to specimen removal to be significant. In multivariate models, nipple-sparing, time from incision to specimen removal, sharp dissection, and previous breast reduction were significant for any necrosis. Univariate analysis of only moderate or severe necrosis showed body mass index, diabetes, nipple-sparing mastectomy, specimen size, and expander size to be significant. Multivariate analysis showed nipple-sparing mastectomy and specimen size to be significant. Nipple-sparing mastectomy was associated with higher rates of necrosis at every level of severity. CONCLUSIONS: Rates of skin flap necrosis are likely higher than reported in retrospective series. Modifiable technical variables have limited the impact on rates of necrosis. Patients with multiple risk factors should be counseled about the risks, especially if they are contemplating nipple-sparing mastectomy.


Assuntos
Implantes de Mama/efeitos adversos , Neoplasias da Mama/cirurgia , Mamoplastia/efeitos adversos , Mamoplastia/métodos , Mastectomia Segmentar/efeitos adversos , Complicações Pós-Operatórias , Retalhos Cirúrgicos/efeitos adversos , Retalhos Cirúrgicos/patologia , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Necrose , Estadiamento de Neoplasias , Mamilos , Tratamentos com Preservação do Órgão , Prognóstico , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
12.
Mol Cell Biol ; 32(20): 4215-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22907751

RESUMO

Regulation of transposable elements (TEs) is critical to the integrity of the host genome. The fission yeast Schizosaccharomyces pombe homologs of mammalian CENP-B perform a host genome surveillance role by controlling Tf2 long terminal repeat (LTR) retrotransposons. However, the mechanisms by which CENP-Bs effect their functions are ill defined. Here, we show that the multifaceted roles of Abp1, the prominent member of fission yeast CENP-Bs, are mediated in part via recognition of a 10-bp AT-rich motif present in most LTRs and require the DNA-binding, transposase, and dimerization domains of Abp1 to maintain transcriptional repression and genome organization. Expression profiling analyses indicated that Abp1 recruits class I/II histone deacetylases (HDACs) to repress Tf2 retrotransposons and genes activated in response to stresses. We demonstrate that class I/II HDACs and sirtuins mediate the clustering of dispersed Tf2 retrotransposons into Tf bodies. Intriguingly, we uncovered an unexpected cooperation between Abp1 and the histone H3K4 methyltransferase Set1 in regulating sense and antisense transcriptional silencing of Tf2 retrotransposons and Tf body integrity. Moreover, Set1-mediated regulation of Tf2 expression and nuclear organization appears to be largely independent of H3K4 methylation. Our study illuminates a molecular pathway involving a transposase-containing transcription factor that cooperates with chromatin modifiers to regulate TE activities.


Assuntos
Proteína B de Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos/genética , Proteína B de Centrômero/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Genoma Fúngico , Histona Desacetilases/metabolismo , Histona Metiltransferases , Retroelementos/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Sirtuínas/metabolismo , Sequências Repetidas Terminais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA