Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3848, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123201

RESUMO

Dietary prebiotics produce favorable changes in the commensal gut microbiome and reduce host vulnerability to stress-induced disruptions in complex behaviors such as sleep. The mechanisms for how prebiotics modulate stress physiology remain unclear; however, emerging evidence suggests that gut microbes and their metabolites may play a role. This study tested if stress and/or dietary prebiotics (Test diet) alter the fecal metabolome; and explored if these changes were related to sleep and/or gut microbial alpha diversity. Male F344 rats on either Test or Control diet were instrumented for electroencephalography biotelemetry measures of sleep/wake. After 5 weeks on diet, rats were either stressed or remained in home cages. Based on untargeted mass spectrometry and 16S rRNA gene sequencing, both stress and Test diet altered the fecal metabolome/microbiome. In addition, Test diet prevented the stress-induced reduction in microbial alpha diversity based on PD_Whole_Tree, which has been previously published. Network propagation analysis revealed that stress increased members of the neuroactive steroidal pregnane molecular family; and that Test diet reduced this effect. We also discovered links between sleep, alpha diversity, and pyrimidine, secondary bile acid, and neuroactive glucocorticoid/pregnanolone-type steroidal metabolites. These results reveal novel microbial-dependent metabolites that may modulate stress physiology and sleep.


Assuntos
Dieta , Fezes/microbiologia , Prebióticos , Sono , Animais , Fezes/química , Masculino , Metabolômica , Ratos
2.
Eur J Neurosci ; 51(4): 1042-1058, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31339598

RESUMO

Nutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behaviour, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane [MFGM] and a polydextrose/galacto-oligosaccharide prebiotic blend) were evaluated. Diets were provided from postnatal day 21 to both non-separated and MS offspring. Spatial memory, visceral sensitivity and stress reactivity were assessed in adulthood. Gene transcripts associated with cognition and stress and the caecal microbiota composition were analysed. MS-induced visceral hypersensitivity was ameliorated by MFGM and to greater extent with the combination of MFGM and prebiotic blend. Furthermore, spatial learning and memory were improved by prebiotics and MFGM alone and with the combination. The prebiotic blend and the combination of the prebiotics and MFGM appeared to facilitate return to baseline with regard to HPA axis response to the restraint stress, which can be beneficial in times where coping mechanisms to stressful events are required. Interestingly, the combination of MFGM and prebiotic reduced the long-term impact of MS on a marker of myelination in the prefrontal cortex. MS affected the microbiota at family level only, while MFGM, the prebiotic blend and the combination influenced abundance at family and genus level as well as influencing beta-diversity levels. In conclusion, intervention with MFGM and prebiotic blend significantly impacted the composition of the microbiota as well as ameliorating some of the long-term effects of early-life stress.


Assuntos
Microbioma Gastrointestinal , Privação Materna , Microbiota , Animais , Encéfalo , Glicolipídeos , Glicoproteínas , Sistema Hipotálamo-Hipofisário , Gotículas Lipídicas , Sistema Hipófise-Suprarrenal , Prebióticos , Ratos , Estresse Fisiológico
3.
Front Pediatr ; 7: 417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681715

RESUMO

Introduction: Milk fat globule membrane (MFGM) is a protein- and phospholipid-rich membrane that surrounds the lipid droplet in milk. We have previously reported that a diet composed of a combination of prebiotics, bovine MFGM (bMFGM), and lactoferrin (bLf) supported brain development in young pigs. Due to the growing interest of its potential benefits in neurodevelopment, the present study focused on the effects of dietary bMFGM alone using the pig as a translational model. Methods: Male pigs were provided ad libitum access to milk replacer with added whey protein-lipid concentrate (source of bMFGM) at 0 (CONT), 2.5 (MFGM-2.5), or 5 (MFGM-5.0) g/L from postnatal day (PND) 2 to 31. Blood was collected from pigs at PND 15 and 31, and pigs underwent behavioral testing using the novel object recognition task starting at PND 25. At PND 31, magnetic resonance imaging was conducted and animals were subsequently euthanized for tissue collection. Results: No group differences in body weight gain or milk intake were observed. At PND 31, few group differences were detected in absolute and relative brain volumes, brain water diffusivity outcomes, or behavioral parameters using the novel object recognition task. Serum lipoprotein was higher in pigs receiving diets with added dietary bMFGM compared with the CONT group. Serum cholesterol and high-density lipoprotein significantly higher (all P < 0.05) in the MFGM-2.5 compared with the CONT group. However, cholesterol concentrations within the brain prefrontal cortex and hippocampus did not differ among dietary groups. Conclusion: In this pig model, dietary supplementation with bMFGM was well-tolerated and supported growth and dietary intake similar to the control formula. Added dietary bMFGM was associated with increased serum lipoprotein, but no group differences in early brain cholesterol concentrations, macrostructure, microstructure, or recognition memory pigs at 31 days of age. Further examination of longitudinal brain development and myelination in the pig, particularly at later ages/maturation, is warranted.

4.
Front Immunol ; 10: 1774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417554

RESUMO

Background: Exposure to stressful stimuli dysregulates inflammatory processes and alters the gut microbiota. Prebiotics, including long-chain fermentable fibers and milk oligosaccharides, have the potential to limit inflammation through modulation of the gut microbiota. To determine whether prebiotics attenuate stress-induced inflammation and microbiota perturbations, mice were fed either a control diet or a diet supplemented with galactooligosaccharides, polydextrose and sialyllactose (GOS+PDX+SL) or sialyllactose (SL) for 2 weeks prior to and during a 6-day exposure to a social disruption stressor. Spleens were collected for immunoreactivity assays. Colon contents were examined for stressor- and diet- induced changes in the gut microbiome and metabolome through 16S rRNA gene sequencing, shotgun metagenomic sequencing and UPLC-MS/MS. Results: Stress increased circulating IL-6 and enhanced splenocyte immunoreactivity to an ex vivo LPS challenge. Diets containing GOS+PDX+SL or SL alone attenuated these responses. Stress exposure resulted in large changes to the gut metabolome, including robust shifts in amino acids, peptides, nucleotides/nucleosides, tryptophan metabolites, and B vitamins. Multiple B vitamins were inversely associated with IL-6 and were augmented in mice fed either GOS+PDX+SL or SL diets. Stressed mice exhibited distinct microbial communities with lower abundances of Lactobacillus spp. and higher abundances of Bacteroides spp. Diet supplementation with GOS+PDX+SL, but not SL alone, orthogonally altered the microbiome and enhanced the growth of Bifidobacterium spp. Metagenome-assembled genomes (MAGs) from mice fed the GOS+PDX+SL diet unveiled genes in a Bifidobacterium MAG for de novo B vitamin synthesis. B vitamers directly attenuated the stressor-induced exacerbation of cytokine production in LPS-stimulated splenocytes. Conclusions: Overall, these data indicate that colonic metabolites, including B vitamins, are responsive to psychosocial stress. Dietary prebiotics reestablish colonic B vitamins and limit stress-induced inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Açúcares da Dieta/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/uso terapêutico , Prebióticos/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Complexo Vitamínico B/metabolismo , Comportamento Agonístico , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Colo/metabolismo , Colo/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Glucanos/administração & dosagem , Glucanos/farmacologia , Interleucina-6/sangue , Masculino , Metagenômica , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ribotipagem , Método Simples-Cego , Comportamento Social , Especificidade da Espécie , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo , Espectrometria de Massas em Tandem , Complexo Vitamínico B/uso terapêutico
5.
Nutr Neurosci ; 22(7): 499-512, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29251222

RESUMO

OBJECTIVES: Previous studies have shown that dietary prebiotics have the potential to improve memory, alter social behavior, and reduce anxiety-like behaviors in rodents. The present research sought to expand upon such results and describe the effects of feeding prebiotics early in life on cognition and neurochemistry using a translational piglet model. METHODS: Pigs were provided customized milk replacer containing 2 g/L each of polydextrose (PDX) and galactooligosaccharide (PDX/GOS) or 0 g/L (Control) from postnatal day (PND) 2-33. Beginning on PND 25, pigs were tested on the novel object recognition (NOR), novel location recognition (NLR), and backtest tasks to measure recognition memory and response to restraint stress. At study conclusion pigs were euthanized and intestine, blood, and brain tissues were collected and analyzed. RESULTS: PDX/GOS-fed pigs demonstrated recognition memory on the NOR task (P < 0.001) whereas Control pigs did not (P = 0.184). Additionally, PDX/GOS-fed pigs visited the novel and sample objects more frequently (all P < 0.05) while spending less time per visit exploring the sample object (P = 0.028) than Control pigs. Volatile fatty acids (VFAs) were decreased in the ascending colon (P < 0.012), whereas butyrate tended to be higher in blood (P = 0.080) and lower in the hippocampus (P = 0.061) of PDX/GOS-fed pigs. PDX/GOS-fed pigs exhibited lower serotonin (P = 0.016) in the hippocampus. CONCLUSION: These findings suggest that early life consumption of PDX/GOS supports recognition memory as measured by NOR while modulating the concentrations of VFAs in the colon, blood, and brain, as well as hippocampal serotonin.


Assuntos
Encéfalo/metabolismo , Catecolaminas/metabolismo , Comportamento Exploratório , Glucanos/administração & dosagem , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Reconhecimento Psicológico , Animais , Ácidos Graxos não Esterificados/sangue , Masculino , Estresse Psicológico , Sus scrofa
6.
Nutr Neurosci ; 22(6): 425-434, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29173065

RESUMO

Early life is a period of significant brain development when the brain is at its most plastic and vulnerable. Stressful episodes during this window of development have long-lasting effects on the central nervous system. Rodent maternal separation (MS) is a reliable model of early-life stress and induces alterations in both physiology and behaviour. Intriguingly, the gut microbiota of MS offspring differ from that of non-separated offspring, suggesting a mechanistic role for the microbiota-gut-brain axis. Hence, we tested whether dietary factors known to affect the gut microbiota alter the neurobehavioural effects of MS. The impact of consuming diet containing prebiotics polydextrose (PDX) and galactooligosaccharide (GOS) alone or in combination with live bacteria Lactobacillus rhamnosus GG (LGG) from weaning onwards in rats subjected to early-life MS was assessed. Adult offspring were assessed for anxiety-like behaviour in the open field test, spatial memory using the Morris water maze, and reactivity to restraint stress. Brains were examined via PCR for changes in mRNA gene expression. Here, we demonstrate that diets containing a combination of PDX/GOS and LGG attenuates the effects of early-life MS on anxiety-like behaviour and hippocampal-dependent learning with changes to hippocampal mRNA expression of genes related to stress circuitry, anxiety and learning.


Assuntos
Comportamento Animal , Glucanos/administração & dosagem , Lacticaseibacillus rhamnosus , Privação Materna , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Estresse Psicológico/microbiologia , Animais , Ansiedade/microbiologia , Comportamento Exploratório , Feminino , Hipocampo/metabolismo , Hipocampo/microbiologia , Masculino , Probióticos/administração & dosagem , Ratos Sprague-Dawley , Memória Espacial
7.
Curr Dev Nutr ; 2(11): nzy067, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30443641

RESUMO

BACKGROUND: Sialyllactose (SL) is a highly abundant oligosaccharide in human milk that has been shown to influence intestinal maturation and cognitive development and exert bifidogenic effects on the gut microbiota. The SL content of infant formula is significantly less than that of human milk, therefore there is interest in determining the effect of supplementing SL to infant formula at the levels in human milk on neonatal outcomes. OBJECTIVE: The aim of this study was to investigate the effect of varying doses of dietary SL compared with a milk replacer formula on weight gain, gastrointestinal development, and microbiota composition in piglets. METHODS: Thirty-eight intact male piglets were randomly assigned to 1 of 4 experimental diets from 2 to 32-33 d of age. Diets were formulated to contain SL at 0 mg/L (CON), 130 mg/L (LOW), 380 mg/L (MOD), or 760 mg/L (HIGH). At 32-33 d of age, blood was collected for serum chemistry and blood cellular analyses, and coagulation time. Immediately after humane killing, the small intestine was excised and intestinal segments fixed for quantification of mucin-producing goblet cells and morphologic analysis. In addition, mucosal disaccharide activity was assessed. Colonic luminal contents and feces were collected for measurement of pH, dry matter, volatile fatty acids, and the microbiota. RESULTS: SL at ≤760 mg/L supported normal growth, intestinal development, and enzyme activity as well as serum chemistries and hematology (P > 0.05). In addition, SL supplementation did not affect overall microbiota structure and diversity in ascending colon contents and feces, but had minor effects on the relative abundances of specific microbes. CONCLUSIONS: The findings in this study demonstrate that SL addition to a prebiotic-containing formula was well-tolerated by neonatal piglets, supported normal growth, and did not result in any adverse effects on serum chemistries or intestinal development.

8.
Nutrients ; 10(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570610

RESUMO

Sialic acid (SA) is an integral component of gangliosides and signaling molecules in the brain and its dietary intake may support cognitive development. We previously reported that feeding sialyllactose, a milk oligosaccharide that contains SA, alters SA content and diffusivity in the pig brain. The present research sought to expand upon such results and describe the effects of feeding sialyllactose on recognition memory and sleep/wake activity using a translational pig model. Pigs were provided ad libitum access to a customized milk replacer containing 0 g/L or 380 g/L of sialyllactose from postnatal day (PND) 2-22. Beginning on PND 15, pigs were fitted with accelerometers to track home-cage activity and testing on the novel object recognition task began at PND 17. There were no significant effects of diet on average daily body weight gain, average daily milk intake, or the gain-to-feed ratio during the study (all p ≥ 0.11). Pigs on both diets were able to display recognition memory on the novel object recognition task (p < 0.01), but performance and exploratory behavior did not differ between groups (all p ≥ 0.11). Total activity and percent time spent sleeping were equivalent between groups during both day and night cycles (all p ≥ 0.56). Dietary sialyllactose did not alter growth performance of young pigs, and there was no evidence that providing SA via sialyllactose benefits the development of recognition memory or gross sleep-related behaviors.


Assuntos
Ciclos de Atividade/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Dieta , Lactose/análogos & derivados , Reconhecimento Psicológico/efeitos dos fármacos , Ácidos Siálicos/administração & dosagem , Fatores Etários , Ração Animal , Animais , Lactose/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , Sus scrofa , Fatores de Tempo
9.
Neurosci Lett ; 677: 103-109, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29409860

RESUMO

Early life nutrition is critical for brain development. Dietary prebiotics and bioactive milk fractions support brain development by increasing plasticity and altering activity in brain regions important for cognition and emotion regulation, perhaps through the gut-microbiome-brain axis. Here we examined the impact of a diet containing prebiotics, lactoferrin, and milk fat globule membrane (test diet) on beneficial gut bacteria, basal gene expression for activity and plasticity markers within brain circuits important for cognition and anxiety, and anxiety-related behavior in the open field. Juvenile male F344 rats were fed the test diet or a calorically matched control diet beginning postnatal day 24. After 4 weeks on diets, rats were sacrificed and brains were removed. Test diet significantly increased mRNA expression for cfos, brain derived neurotropic factor, and the GluN1 subunit of the NMDA receptor in the prefrontal cortex and reduced cfos mRNA within the amygdala. Diet-induced increases in fecal Lactobacillus spp., measured using selective bacterial culture, positively correlated with altered gene expression for cfos and serotonin receptors within multiple brain regions. In a separate cohort of juvenile rats, 4 weeks of the test diet increased time spent in the center of the open field, a behavior indicative of reduced anxiety. These data demonstrate that early life diets containing prebiotics and bioactive milk fractions can adaptively alter genes in neural circuits underlying emotion regulation and impact anxiety-related behavior.


Assuntos
Ansiedade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Emoções , Glicolipídeos/administração & dosagem , Glicoproteínas/administração & dosagem , Lactoferrina/administração & dosagem , Prebióticos/administração & dosagem , Animais , Encéfalo/crescimento & desenvolvimento , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta , Microbioma Gastrointestinal , Expressão Gênica , Gotículas Lipídicas , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344
10.
Nutrients ; 9(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182578

RESUMO

Sialic acid (SA) is a key component of gangliosides and neural cell adhesion molecules important during neurodevelopment. Human milk contains SA in the form of sialyllactose (SL) an abundant oligosaccharide. To better understand the potential role of dietary SL on neurodevelopment, the effects of varying doses of dietary SL on brain SA content and neuroimaging markers of development were assessed in a newborn piglet model. Thirty-eight male pigs were provided one of four experimental diets from 2 to 32 days of age. Diets were formulated to contain: 0 mg SL/L (CON), 130 mg SL/L (LOW), 380 mg SL/L (MOD) or 760 mg SL/L (HIGH). At 32 or 33 days of age, all pigs were subjected to magnetic resonance imaging (MRI) to assess brain development. After MRI, pig serum and brains were collected and total, free and bound SA was analyzed. Results from this study indicate dietary SL influenced (p = 0.05) bound SA in the prefrontal cortex and the ratio of free SA to bound SA in the hippocampus (p = 0.04). Diffusion tensor imaging indicated treatment effects in mean (p < 0.01), axial (p < 0.01) and radial (p = 0.01) diffusivity in the corpus callosum. Tract-based spatial statistics (TBSS) indicated differences (p < 0.05) in white matter tracts and voxel-based morphometry (VBM) indicated differences (p < 0.05) in grey matter between LOW and MOD pigs. CONT and HIGH pigs were not included in the TBSS and VBM assessments. These findings suggest the corpus callosum, prefrontal cortex and hippocampus may be differentially sensitive to dietary SL supplementation.


Assuntos
Corpo Caloso/metabolismo , Lactose/análogos & derivados , Córtex Pré-Frontal/metabolismo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Suínos/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Corpo Caloso/diagnóstico por imagem , Dieta/veterinária , Lactose/administração & dosagem , Lactose/farmacologia , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Ácidos Siálicos/administração & dosagem , Ácidos Siálicos/química
11.
Eur J Neurosci ; 45(3): 342-357, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27763700

RESUMO

Manipulating gut microbes may improve mental health. Prebiotics are indigestible compounds that increase the growth and activity of health-promoting microorganisms, yet few studies have examined how prebiotics affect CNS function. Using an acute inescapable stressor known to produce learned helplessness behaviours such as failure to escape and exaggerated fear, we tested whether early life supplementation of a blend of two prebiotics, galactooligosaccharide (GOS) and polydextrose (PDX), and the glycoprotein lactoferrin (LAC) would attenuate behavioural and biological responses to stress later in life. Juvenile, male F344 rats were fed diets containing either GOS and PDX alone, LAC alone, or GOS, PDX and LAC. All diets altered gut bacteria, while diets containing GOS and PDX increased Lactobacillus spp. After 4 weeks, rats were exposed to inescapable stress, and either immediately killed for blood and tissues, or assessed for learned helplessness 24 h later. Diets did not attenuate stress effects on spleen weight, corticosterone and blood glucose; however, all diets differentially attenuated stress-induced learned helplessness. Notably, in situ hybridization revealed that all diets reduced stress-evoked cfos mRNA in the dorsal raphe nucleus (DRN), a structure important for learned helplessness behaviours. In addition, GOS, PDX and LAC diet attenuated stress-evoked decreases in mRNA for the 5-HT1A autoreceptor in the DRN and increased basal BDNF mRNA within the prefrontal cortex. These data suggest early life diets containing prebiotics and/or LAC promote behavioural stress resistance and uniquely modulate gene expression in corresponding circuits.


Assuntos
Dieta , Desamparo Aprendido , Lactoferrina/uso terapêutico , Prebióticos , Estresse Psicológico/dietoterapia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lactoferrina/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/crescimento & desenvolvimento , Núcleos da Rafe/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico/prevenção & controle
12.
Int J Dev Neurosci ; 55: 28-33, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27603970

RESUMO

Early life nutrition plays an important role in brain development. Emerging research in rodents, piglets and humans suggest that prebiotics, milk fat globule membrane and lactoferrin may each play unique roles in brain development and cognitive functions. However, knowledge of their combined impact is lacking. We show here that providing weanling rats with a diet containing milk fat globule membrane, lactoferrin and a polydextrose/galactooligosaccharide prebiotic blend led to a significant increase in total dendritic spine density in hippocampal dentate gyrus neurons. Region-specific alterations in dendritic spine density and morphology could provide a mechanistic basis underlying broader cognitive benefits, but further research is required to demonstrate functional consequences of these observations.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Suplementos Nutricionais , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurônios/citologia , Prebióticos/administração & dosagem , Análise de Variância , Animais , Animais Recém-Nascidos , Espinhas Dendríticas/ultraestrutura , Ácidos Docosa-Hexaenoicos/administração & dosagem , Lactoferrina/administração & dosagem , Masculino , Ratos , Ratos Long-Evans
13.
Front Nutr ; 3: 39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660754

RESUMO

BACKGROUND: Milk oligosaccharides (OSs) are bioactive components known to influence neonatal development. These compounds have specific physiological functions acting as prebiotics, immune system modulators, and enhancing intestine and brain development. OBJECTIVES: The pig is a commonly used model for studying human nutrition, and there is interest in quantifying OS composition of porcine milk across lactation compared with human milk. In this study, we hypothesized that OS and sialic acid (SA) composition of porcine milk would be influenced by stage of lactation. METHODS: Up to 250 mL of milk were collected from seven sows at each of three time points: day 0 (colostrum), days 7-9 (mature), and days 17-19 (weaning). Colostrum was collected within 6 h of farrowing and 3-day intervals were used for mature and weaning milk to ensure representative sampling. Milk samples were analyzed for OS profiles by Nano-LC Chip-QTOF MS, OS concentrations via HPAEC-PAD, and SA (total and free) was assessed by enzymatic reaction fluorescence detection. RESULTS: Sixty unique OSs were identified in porcine milk. Neutral OSs were the most abundant at each lactation stage (69-81%), followed by acidic-sialylated OSs (16-29%) and neutral-fucosylated OSs (2-4%). As lactation progressed, acidic OSs decreased (P = 0.003), whereas neutral-fucosylated (P < 0.001) and neutral OSs (P = 0.003) increased throughout lactation. Six OSs were present in all samples analyzed across lactation [lacto-N-difucohexaose I (LNDFH-I), 2'-fucosyllactose (2'-FL), lacto-N-fucopentaose I (LNFP-I), lacto-N-neohexaose (LNnH), α1-3,ß-4-d-galactotriose (3-Hex), 3'-sialyllactose (3'-SL)], while LDFT was present only in colostrum samples. Analysis of individual OS concentrations indicated differences (P = 0.023) between days 0 and 7. Conversely, between days 7 and 18, OS concentrations remained stable with only LNnH (P < 0.001) and LNDFH-I (P = 0.002) decreasing over this period. Analysis of free SA indicated a decrease (P < 0.001) as lactation progressed, while bound (P < 0.001) and total (P < 0.001) SA increased across lactation. CONCLUSION: Concentrations of OS differ between colostrum and mature milk in the pig, and SA concentrations shift from free to bound forms as lactation progresses. Our results suggest that although porcine milk OS concentration and the number of structures is lower than human milk, the OS profile appears to be closer to human milk rather than to bovine milk, based on previously published profiles.

14.
Front Pediatr ; 4: 44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200325

RESUMO

INTRODUCTION: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity; however, the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose-response effects of a-LA on piglet growth and neurodevelopment. METHODS: Beginning at 2 days of age, 31 male pigs received 1 of 3 diets: control (CONT) (0 mg a-LA/100 g), low a-LA (LOW) (120 mg a-LA/100 g), or high a-LA (HIGH) (240 mg a-LA/100 g). From 14 to 28 days of age, pigs were subjected to spatial T-maze assessment, and macrostructural and microstructural neuroimaging procedures were performed at 31 days of age. RESULTS: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH-fed pigs compared with both the CONT (P < 0.01)- and LOW (P = 0.03)-fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH-fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH-fed piglets were not different (P = 0.12) than LOW-fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH-fed piglets. CONCLUSION: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT- and LOW-fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets.

15.
J Pediatr Gastroenterol Nutr ; 63(6): 688-697, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27031373

RESUMO

OBJECTIVE: This study tested the hypothesis that the addition of prebiotics and 2 functional milk ingredients to infant formula would maintain normal growth and gut development, and modify microbiota composition and neurotransmitter gene expression in neonatal piglets. METHODS: Two-day-old male piglets (n = 24) were fed formula (CONT) or formula with polydextrose (1.2 g/100 g diet), galactooligosaccharides (3.5 g/100 g diet), bovine lactoferrin (0.3 g/100 g diet), and milk fat globule membrane-10 (2.5 g/100 g diet) (TEST) for 30 days. On study day 31, intestinal samples, ileal and colonic contents, and feces were collected. Intestinal histomorphology, disaccharidase activity, serotonin (5'HT), vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH) were measured. Gut microbiota composition was assessed by pyrosequencing of the V3-V5 regions of 16S rRNA and quantitative polymerase chain reaction. RESULTS: Body weight of piglets on TEST was greater (P ≤ 0.05) than CONT on days 17 to 30. Both groups displayed growth patterns within the range observed for sow-reared pigs. TEST piglets had greater jejunal lactase (P = 0.03) and higher (P = 0.003) ileal VIP expression. TEST piglets tended to have greater (P = 0.09) sucrase activity, longer (P = 0.08) ileal villi, and greater (P = 0.06) duodenal TH expression. Microbial communities of TEST piglets differed from CONT in ascending colon (AC, P = 0.001) and feces (P ≤ 0.05). CONT piglets had greater relative abundances of Mogibacterium, Collinsella, Klebsiella, Escherichia/Shigella, Eubacterium, and Roseburia compared with TEST piglets in AC. In feces, CONT piglets harbored lower (P ≤ 0.05) proportions of Parabacteroides, Clostridium IV, Lutispora, and Sutterella than TEST piglets. CONCLUSIONS: A mixture of bioactive ingredients improved weight gain and gut maturation, modulated colonic and fecal microbial composition, and reduced the proportions of opportunistic pathogens.


Assuntos
Colo/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Fórmulas Infantis , Prebióticos/microbiologia , Animais , Peso Corporal , Expressão Gênica , Humanos , Lactente , Mucosa Intestinal/enzimologia , Masculino , Leite/metabolismo , Neurotransmissores , Suínos
16.
Front Pediatr ; 4: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870719

RESUMO

INTRODUCTION: Milk fat globule membrane (MFGM) and lactoferrin have been identified as two components that have potential to affect neurodevelopment. While concentrations of some MFGM constituents in infant formulas are within human milk range, they may not be present at optimal or clinically effective levels. However, lactoferrin levels of infant formulas are consistently reported to be lower than human milk. This study sought to provide a novel combination of prebiotics, bovine-derived MFGM, and lactoferrin and assess their influence on neurodevelopment. METHODS: Twenty-four male piglets were provided either TEST (n = 12) or CONT (n = 12) diet from 2 to 31 days of age. Piglets underwent spatial T-maze assessment starting at 17 days of age, were subjected to magnetic resonance imaging at 30 days of age, and were euthanized for tissue collection at 31 days of age. RESULTS: Diffusion tensor imaging revealed differences in radial (P = 0.032) and mean (P = 0.028) diffusivities in the internal capsule, where CONT piglets had higher rates of diffusion compared with TEST piglets. Voxel-based morphometry indicated larger (P < 0.05) differences in cortical gray and white matter concentrations, with CONT piglets having larger tissue clusters in these regions compared with TEST piglets. In the spatial T-maze assessment, CONT piglets exhibited shorter latency to choice compared with TEST piglets on day 2 of acquisition and days 3 and 4 of reversal. CONCLUSION: Observed differences in microstructure maturation of the internal capsule and cortical tissue concentrations suggest that piglets provided TEST diet were more advanced developmentally than piglets provided CONT diet. Therefore, supplementation of infant formula with prebiotics, MFGM, and lactoferrin may support neurodevelopment in human infants.

17.
J Nutr ; 146(2): 200-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701794

RESUMO

BACKGROUND: Sialyllactose is a key human milk oligosaccharide and consists of sialic acid (SA) bound to a lactose molecule. Breastfed infants have increased accumulation of ganglioside-bound SA compared with formula-fed infants. OBJECTIVE: This study aimed to determine whether different isomers of sialyllactose enrich brain SA and modulate the microbiome of developing neonatal piglets. METHODS: Day-old pigs were randomly allocated to 6 diets (control, 2 or 4 g 3'-sialyllactose/L, 2 or 4 g 6'-sialyllactose/L, or 2 g polydextrose/L + 2 g galacto-oligosaccharides/L; n = 9) and fed 3 times/d for 21 d. Pigs were killed, and the left hemisphere of the brain was dissected into cerebrum, cerebellum, corpus callosum, and hippocampus regions. SA was determined by using a modified periodic acid-resorcinol reaction. Microbial composition of the intestinal digesta was analyzed with the use of 16S ribosomal DNA Illumina sequencing. RESULTS: Dietary sialyllactose did not affect feed intake, growth, or fecal consistency. Ganglioside-bound SA in the corpus callosum of pigs fed 2 g 3'-sialyllactose or 6'-sialyllactose/L increased by 15% in comparison with control pigs. Similarly, ganglioside-bound SA in the cerebellum of pigs fed 4 g 3'-sialyllactose/L increased by 10% in comparison with control pigs. Significant (P < 0.05, Adonis Test) microbiome differences were observed in the proximal and distal colons of piglets fed control compared with 4-g 6'-sialyllactose/L formulas. Differences were attributed to an increase in bacterial taxa belonging to species Collinsella aerofaciens (phylum Actinobacteria), genera Ruminococcus and Faecalibacterium (phylum Firmicutes), and genus Prevotella (phylum Bacteroidetes) (Wald test, P < 0.05, DeSeq2) compared with piglets fed the control diet. Taxa belonging to families Enterobacteriaceae and Enterococcaceae (phylum Proteobacteria), as well as taxa belonging to family Lachnospiraceae and order Lactobacillales (phylum Firmicutes), were 2.3- and 4-fold lower, respectively, in 6'-sialyllactose-fed piglets than in controls. CONCLUSIONS: Supplementation of formula with 3'- or 6'-sialyllactose can enrich ganglioside SA in the brain and modulate gut-associated microbiota in neonatal pigs. We propose 2 potential routes by which sialyllactose may positively affect the neonate: serving as a source of SA for neurologic development and promoting beneficial microbiota.


Assuntos
Encéfalo/efeitos dos fármacos , Colo/efeitos dos fármacos , Suplementos Nutricionais , Gangliosídeos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fórmulas Infantis , Lactose/análogos & derivados , Ácidos Siálicos/farmacologia , Animais , Bactérias/crescimento & desenvolvimento , Encéfalo/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Colo/microbiologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Dieta , Isomerismo , Lactose/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Suínos
18.
Front Behav Neurosci ; 10: 240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119579

RESUMO

Severe, repeated or chronic stress produces negative health outcomes including disruptions of the sleep/wake cycle and gut microbial dysbiosis. Diets rich in prebiotics and glycoproteins impact the gut microbiota and may increase gut microbial species that reduce the impact of stress. This experiment tested the hypothesis that consumption of dietary prebiotics, lactoferrin (Lf) and milk fat globule membrane (MFGM) will reduce the negative physiological impacts of stress. Male F344 rats, postnatal day (PND) 24, received a diet with prebiotics, Lf and MFGM (test) or a calorically matched control diet. Fecal samples were collected on PND 35/70/91 for 16S rRNA sequencing to examine microbial composition and, in a subset of rats; Lactobacillus rhamnosus was measured using selective culture. On PND 59, biotelemetry devices were implanted to record sleep/wake electroencephalographic (EEG). Rats were exposed to an acute stressor (100, 1.5 mA, tail shocks) on PND 87 and recordings continued until PND 94. Test diet, compared to control diet, increased fecal Lactobacillus rhamnosus colony forming units (CFU), facilitated non-rapid eye movement (NREM) sleep consolidation (PND 71/72) and enhanced rapid eye movement (REM) sleep rebound after stressor exposure (PND 87). Rats fed control diet had stress-induced reductions in alpha diversity and diurnal amplitude of temperature, which were attenuated by the test diet (PND 91). Stepwise multiple regression analysis revealed a significant linear relationship between early-life Deferribacteres (PND 35) and longer NREM sleep episodes (PND 71/72). A diet containing prebiotics, Lf and MFGM enhanced sleep quality, which was related to changes in gut bacteria and modulated the impact of stress on sleep, diurnal rhythms and the gut microbiota.

19.
Front Behav Neurosci ; 9: 291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26578919

RESUMO

Iron deficiency is the most common nutritional deficiency in humans, affecting more than two billion people worldwide. Early-life iron deficiency can lead to irreversible deficits in learning and memory. The pig represents a promising model animal for studying such deficits, because of its similarities to humans during early development. We investigated the effects of pre-weaning dietary iron deficiency in piglets on growth, blood parameters, cognitive performance, and brain histology later in life. Four to six days after birth, 10 male sibling pairs of piglets were taken from 10 different sows. One piglet of each pair was given a 200 mg iron dextran injection and fed a control milk diet for 28 days (88 mg Fe/kg), whereas the other sibling was given a saline injection and fed an iron deficient (ID) milk diet (21 mg Fe/kg). Due to severely retarded growth of two of the ID piglets, only eight ID piglets were tested behaviorally. After dietary treatment, all piglets were fed a balanced commercial pig diet (190-240 mg Fe/kg). Starting at 7.5 weeks of age, piglets were tested in a spatial cognitive holeboard task. In this task, 4 of 16 holes contain a hidden food reward, allowing measurement of working (short-term) memory and reference (long-term) memory (RM) simultaneously. All piglets received 40-60 acquisition trials, followed by a 16-trial reversal phase. ID piglets showed permanently retarded growth and a strong decrease in blood iron parameters during dietary treatment. After treatment, ID piglets' blood iron values restored to normal levels. In the holeboard task, ID piglets showed impaired RM learning during acquisition and reversal. Iron staining at necropsy at 12 weeks of age showed that ID piglets had fewer iron-containing cells in hippocampal regions CA1 and dentate gyrus (DG). The number of iron-containing cells in CA3 correlated positively with the average RM score during acquisition across all animals. Our results support the hypothesis that early-life iron deficiency leads to lasting cognitive deficits. The piglet as a model animal, tested in the holeboard, can be useful in future research for assessing long-term cognitive effects of early-life diets or diet-induced deficiencies.

20.
Brain Behav Immun ; 50: 166-177, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26144888

RESUMO

There are extensive bidirectional interactions between the gut microbiota and the central nervous system (CNS), and studies demonstrate that stressor exposure significantly alters gut microbiota community structure. We tested whether oligosaccharides naturally found in high levels in human milk, which have been reported to impact brain development and enhance the growth of beneficial commensal microbes, would prevent stressor-induced alterations in gut microbial community composition and attenuate stressor-induced anxiety-like behavior. Mice were fed standard laboratory diet, or laboratory diet containing the human milk oligosaccharides 3'Sialyllactose (3'SL) or 6'Sialyllactose (6'SL) for 2 weeks prior to being exposed to either a social disruption stressor or a non-stressed control condition. Stressor exposure significantly changed the structure of the colonic mucosa-associated microbiota in control mice, as indicated by changes in beta diversity. The stressor resulted in anxiety-like behavior in both the light/dark preference and open field tests in control mice. This effect was associated with a reduction in immature neurons in the dentate gyrus as indicated by doublecortin (DCX) immunostaining. These effects were not evident in mice fed milk oligosaccharides; stressor exposure did not significantly change microbial community structure in mice fed 3'SL or 6'SL. In addition, 3'SL and 6'SL helped maintain normal behavior on tests of anxiety-like behavior and normal numbers of DCX+ immature neurons. These studies indicate that milk oligosaccharides support normal microbial communities and behavioral responses during stressor exposure, potentially through effects on the gut microbiota-brain axis.


Assuntos
Ansiedade/microbiologia , Encéfalo/microbiologia , Microbioma Gastrointestinal/fisiologia , Lactose/análogos & derivados , Oligossacarídeos/administração & dosagem , Estresse Psicológico/microbiologia , Animais , Índice de Massa Corporal , Proliferação de Células , Corticosterona/sangue , Proteína Duplacortina , Interleucina-6/sangue , Lactose/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/microbiologia , Baço/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...